-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfdrlasso.py
98 lines (78 loc) · 3 KB
/
fdrlasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# --------------------------------------------------------------------------
# Adaptation in Python of the Matlab code.
# Authors : Cédric Allain and Clotilde Miura
# Copyright @ Weijie Su, Malgorzata Bogdan, and Emmanuel Candes, 2015
# Source: https://github.com/wjsu/fdrlasso/blob/master/fdrlasso.m
# --------------------------------------------------------------------------
# Packages
import sys
import numpy as np
from scipy.stats import norm
from scipy.optimize import fminbound
# Functions
def fdrlasso(tpp, delta, epsi, verbose=0):
"""
This function calculates the Lasso trade-off curve given tpp (true
positive proportion), delta = n/p (shape of the design matrix, or
subsampling rate), and epsi = k/p (sparsity ratio).
All tpp, delta, and epsi are between 0 and 1; if the
pair (delta, epsi) is above the Donoho-Tanner phase transition, tpp
should be no larger than u^\star = powermax(delta, epsi)
"""
if tpp > powermax(delta, epsi):
if verbose > 0:
print('Invalid input!')
return 1
if tpp == 0:
return 0
# make stepsize smaller for higher accuracy
stepsize = 0.1
tmax = max(10, np.sqrt(delta/epsi/tpp) + 1)
tmin = tmax - stepsize
while tmin > 0:
if lsandwich(tmin, tpp, delta, epsi) < rsandwich(tmin, tpp): break
tmax = tmin
tmin = tmax - stepsize
if tmin <= 0:
stepsize = stepsize/100
tmax = max(10, np.sqrt(delta/epsi/tpp) + 1)
tmin = tmax - stepsize
while tmin > 0:
if lsandwich(tmin, tpp, delta, epsi) < rsandwich(tmin, tpp): break
tmax = tmin
tmin = tmax - stepsize
diff = tmax - tmin
while diff > 1e-6:
tmid = 0.5*tmax + 0.5*tmin
if lsandwich(tmid, tpp, delta, epsi) > rsandwich(tmid, tpp):
tmax = tmid
else:
tmin = tmid
diff = tmax - tmin
t = (tmax + tmin)/2
q = 2*(1-epsi)*norm.cdf(-t)/(2*(1-epsi)*norm.cdf(-t) + epsi*tpp)
return q
def lsandwich(t, tpp, delta, epsi):
Lnume = (1-epsi)*(2*(1+t**2)*norm.cdf(-t) - 2*t*norm.pdf(t)) + epsi*(1+t**2) - delta
Ldeno = epsi*((1+t**2)*(1-2*norm.cdf(-t)) + 2*t*norm.pdf(t))
L = Lnume/Ldeno
return L
def rsandwich(t, tpp):
R = (1 - tpp)/(1 - 2*norm.cdf(-t))
return R
def powermax(delta, epsilon):
""" Highest power for delta < 1 and epsilon > epsilon_phase """
if delta >= 1:
power = 1
return power
epsilon_star = epsilonDT(delta)
if epsilon <= epsilon_star:
power = 1;
return power
power = (epsilon - epsilon_star)*(delta - epsilon_star)/epsilon/(1 - epsilon_star) + epsilon_star/epsilon
return power
def epsilonDT(delta):
minus_f = lambda x: -(1+2/delta*x*norm.pdf(x) - 2/delta*(1+x**2)*norm.cdf(-x))/(1+x**2-2*(1+x**2)*norm.cdf(-x)+2*x*norm.pdf(x))*delta
alpha_phase = fminbound(func=minus_f, x1=0, x2=8, maxfun=1000, disp=0)
epsi = -minus_f(alpha_phase)
return epsi