-
Notifications
You must be signed in to change notification settings - Fork 3
/
ExampleSearcheline2100.py
32 lines (27 loc) · 1.19 KB
/
ExampleSearcheline2100.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from Searcheline import Searcheline
import CelesteUtils as utils
import math
class Search2100(Searcheline):
# initial state to search from
def init_state(self):
utils.load_room(self.p8, 20) # load 2100m
utils.suppress_object(self.p8, self.p8.game.balloon) # don't consider balloons
utils.skip_player_spawn(self.p8) # skip to after player has spawned
return self.p8.game.objects
# get list of available inputs for a state - only consider {r, r + z, u + r + x}
def allowable_actions(self, objs, player, h_movement, can_jump, can_dash):
actions = [0b000010] # r
if can_jump:
actions.extend([0b010010]) # r + z
if can_dash:
actions.extend([0b100110]) # u + r + x
return actions
# from the input restrictions, we won't exit off of a dash- the max y displacement is 4 px off the spring
def exit_heuristic(self, player, exit_spd_y=4):
return math.ceil((player.y + 4) / exit_spd_y)
if __name__ == '__main__':
# search up to depth 40 completely (i.e., don't stop after reaching the optimal depth)
s = Search2100()
solutions = s.search(40, complete=True)
# translate fastest solution to english and print
print(f"inputs: {s.inputs_to_english(solutions[0])}")