-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNetwork_Clean.py
257 lines (233 loc) · 11.5 KB
/
Network_Clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Allow import of modified libraries
import sys
sys.path.append('Modified_Libs')
import geopandas as gpd
from centerline.shp2centerline import *
import time
import datetime
from datetime import datetime
import pandas as pd
import shapely.wkt
import os
import re
from shapely.geometry import Point, LineString, MultiPoint, MultiLineString
import shapely.ops
#Settings
crs_in = {'init': 'epsg:4326'} #WGS 84
crs_measure = {'init': 'epsg:32648'} #UTM zone 48N
bufwidth = 0.00025 # width to buffer initial roads
road_too_small_m = 30 # length of roads to delete (metres, crs_measure)
accuracy_of_centerlines = bufwidth / 4 # simplification of polygons for calculating centerline. Seems to work well.
verbose = 1 # Print mid-script actions or not
acceptable_suspension_settings = ['MEDIUM', 'HARD-MEDIUM','SUV'] #Filter for Point cloud on suspension
low_speed = 20 #Filter for Point cloud on speed: lowest speed for IRI to be considered valid
high_speed = 40 #Filter for Point cloud on speed: highest speed for IRI to be considered valid
timethresh = r'01/01/2017' #Filter for Point cloud on time: earliest IRI reading to be considered valid
timethresh_format = '%d/%m/%Y'
timethresh2 = datetime.strptime(timethresh, timethresh_format)
VPROMMS_ID_certainty_thresh = 0.75 #When re-attaching VPROMMS_IDs, assign certainty after this percentage of points have the same ID
#Input files
linefile = r'Adj_lines.csv'
runtime = os.path.join('data', 'output')
RawPoints = r'Original_Points.csv'
RawLines = r'Original_Intervals.csv'
#User Defined Functions
def Filedump(df, name):
if verbose == 1:
df.to_csv(os.path.join(runtime, r'%s.csv' % name))
def FileOut(df, name):
df.to_csv(os.path.join(runtime,r'%s.csv' % name), index = False)
def Vprint(s):
if verbose == 1:
ts = time.time()
st = datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
print '\n%s -- %s' % (st, s)
def opIRI(x):
y = pd.DataFrame()
y['ID'] = [x.ID.iloc[0]]
y['iri_mean'] = [x.iri.mean()]
y['iri_med'] = [x.iri.median()]
y['iri_min'] = [x.iri.min()]
y['iri_max'] = [x.iri.max()]
y['iri_stdev'] = [x.iri.std()]
y['speed_mean'] = [x.speed.mean()]
y['speed_med'] = [x.speed.median()]
return y
def opVID(x):
z = pd.DataFrame()
z['ID'] = [x.ID.iloc[0]]
y = pd.DataFrame(x['VPROMMS_ID'].str[:10].value_counts(normalize = True).reset_index())
y.columns = ['VID','Fraction']
a, b = y.VID.tolist(), y.Fraction.tolist()
if len(b) == 0:
d = None
elif b[0] > VPROMMS_ID_certainty_thresh:
d = a[0]
else:
d = 'Input VPROMMS: '
for x in range(0,len(a)):
d = d + '%s (%s pct); ' % (a[x], round((b[x]*100),2))
z['VPROMMS_ID'] = d
return z
################################################################################
Vprint('**Phase 1: Create snapped road network**')
Vprint('Read in Roads file, buffer all lines')
roadlines = pd.read_csv(os.path.join(runtime, linefile))
gdf_lines = gpd.GeoDataFrame(roadlines, crs=crs_in, geometry = roadlines['Line_Geometry'].map(shapely.wkt.loads))
gdf_lines['Buffer'] = gdf_lines['geometry'].buffer(bufwidth)
gdf_lines = gdf_lines.set_geometry('Buffer')
gdf_lines = gdf_lines.drop('geometry', axis = 1)
union_obj = str(gdf_lines.unary_union)
Vprint('join roads into single multipolygon, then find centerline')
union_obj = union_obj.replace('MULTIPOLYGON (','').replace(')))','))')
pat = r'(?<=\(\().+?(?=\)\))'
match = re.findall(pat, union_obj)
sausages = pd.DataFrame(match, columns = ['geometry'])
sausages['geometry'] = 'POLYGON ((' + sausages['geometry'].map(str) + '))'
sausages['id'] = sausages.index
Filedump(sausages,'temp')
sausages = gpd.GeoDataFrame(sausages, crs = crs_in, geometry = sausages['geometry'].map(shapely.wkt.loads))
sausages.to_file(os.path.join(runtime, 'temp.shp'), driver = 'ESRI Shapefile')
tempfile = 'temp.shp'
targ = os.path.join(runtime, tempfile)
Shp2centerline(targ, os.path.join(runtime, 'output_%s.shp' % accuracy_of_centerlines), accuracy_of_centerlines)
a = gpd.read_file(os.path.join(runtime, 'output_%s.shp' % accuracy_of_centerlines))
a['Shapelyobj'] = a['geometry']
a['WKTgeometry'] = a['geometry'].map(str)
Phase1_final_df = pd.DataFrame(columns = ['WKT'])
roads = []
junctions = pd.DataFrame(columns = ['Junction'])
#split up the geometry collections, add useful roads to df
for row in a.index:
Vprint('splittling collection number %s' % row)
obj = a['WKTgeometry'].iloc[row]
obj = obj.replace('MULTILINESTRING (','').replace('))',')')
pat = r'(?<=\().+?(?=\))'
match = re.findall(pat, obj)
b = pd.DataFrame(match, columns = ['geometry'])
b['Line'] = 'LINESTRING (' + b['geometry'].map(str) + ')'
b['Point1'] = b['geometry'].str.split(', ').str.get(0)
b['Point2'] = b['geometry'].str.split(', ').str.get(-1)
c = b['Point1'].tolist() + b['Point2'].tolist()
e = pd.DataFrame(c,columns = ['points'])
f = pd.DataFrame(e.apply(pd.value_counts),columns = ['points'])
f = f.loc[f['points'] >= 3]
f['Geom'] = f.index
f['Junction'] = 'POINT (' + f['Geom'].map(str) + ')'
junctions = pd.concat([junctions, f], axis = 0, ignore_index=True)
f['Junction'] = f['Junction'].map(shapely.wkt.loads)
points = MultiPoint(f['Junction'])
line = a['Shapelyobj'].iloc[row]
line = shapely.ops.linemerge(line)
try:
splitted = shapely.ops.split(line, points)
for x in splitted:
roads.append(str(x))
except:
Vprint(' ** This collection cannot be split **')
roads.append(str(line))
Phase_1_roads = pd.DataFrame(roads)
Phase_1_junctions = junctions.drop(['Geom'], axis = 1)
Filedump(Phase_1_junctions, 'Phase_1_junctions')
Filedump(Phase_1_roads, 'Phase_1_roads')
################################################################################
Vprint('**Phase 2: Deleteing small road artifacts**')
n = 1
def RoadCleanup(inputroads, inputjunctions, n):
Vprint('Road cleanup: iteration %d' % n)
bad_roads, good_roads = inputroads, inputroads
bad_roads.columns, good_roads.columns = ['lines'],['lines']
Vprint(' Drop Small Roads that do not glue junctions. Threshold length: %dm' % road_too_small_m)
bad_roads['shapely'] = bad_roads['lines'].map(shapely.wkt.loads)
gbad_roads = gpd.GeoDataFrame(bad_roads, crs = crs_in, geometry = bad_roads['shapely'])
gbad_roads = gbad_roads.to_crs(crs_measure)
gbad_roads['length'] = gbad_roads['geometry'].apply(lambda x: (x.length)).map(float)
bad_roads = gbad_roads.drop('geometry',axis = 1)
bad_roads['start'] = bad_roads['shapely'].apply(lambda x: Point(x.coords[0])).map(str)
bad_roads['end'] = bad_roads['shapely'].apply(lambda x: Point(x.coords[-1])).map(str)
Vprint('Input Junctions length = %d' % len(inputjunctions['Junction']))
Vprint('length of bad roads before junction check: %d' % len(bad_roads))
Filedump(inputjunctions,'Input_Junctions_%d' % n)
inputjunctions['Junction'] = inputjunctions['Junction'].map(str)
bad_roads = bad_roads.drop(bad_roads[(bad_roads['start'].isin(inputjunctions['Junction'].map(str)) == True) & (bad_roads['end'].isin(inputjunctions['Junction'].map(str)) == True)].index)
Vprint('Length of bad roads after junction check: %d' % len(bad_roads))
bad_roads = bad_roads.drop(bad_roads[(bad_roads['length'] > road_too_small_m)].index)
Filedump(bad_roads,'bad_roads_%d' % n)
bad_roads = bad_roads[['lines']]
good_roads = good_roads.drop(good_roads[(good_roads['lines'].isin(bad_roads['lines']) == True)].index)
Vprint(' Define new true junctions')
good_roads['shapely'] = good_roads['lines'].map(shapely.wkt.loads)
good_roads['length'] = good_roads['shapely'].apply(lambda x: x.length).map(float)
good_roads['start'] = good_roads['shapely'].apply(lambda x: Point(x.coords[0])).map(str)
good_roads['end'] = good_roads['shapely'].apply(lambda x: Point(x.coords[-1])).map(str)
c = good_roads['start'].tolist() + good_roads['end'].tolist()
e = pd.DataFrame(c,columns = ['points'])
OutJunctions = pd.DataFrame(e.apply(pd.value_counts))
OutJunctions['Junction'] = OutJunctions.index
OutJunctions = OutJunctions.loc[OutJunctions['points'] >= 3]
OutJunctions['Junction'] = OutJunctions['Junction'].map(shapely.wkt.loads)
Filedump(OutJunctions, 'Outjunctions_%d'%n)
Filedump(good_roads, 'good_roads_%d'%n)
Vprint(' Resplit roads on new junctions')
Phase2_final_df = pd.DataFrame(columns = ['WKT'])
points = MultiPoint(OutJunctions['Junction'])
good_roads['shapely'] = good_roads['lines'].map(shapely.wkt.loads)
good_roads_list = good_roads['shapely'].tolist()
roads = []
for gRoad in good_roads_list:
line = MultiLineString([gRoad])
line = shapely.ops.linemerge(line)
Filedump(pd.DataFrame({'junctions':[points]}),'POINTS_%s' % n)
Filedump(pd.DataFrame({'line':[line]}),'LINE_%s' % n)
splitted = shapely.ops.split(line, points)
for x in splitted:
roads.append(str(x))
OutRoads = pd.DataFrame(roads)
Filedump(OutRoads, 'Outroads_%d' % n)
return OutRoads, OutJunctions
iteration_roads, iteration_junctions = RoadCleanup(Phase_1_roads, Phase_1_junctions, 1)
phase_2_final_roads, phase_2_final_junctions = RoadCleanup(iteration_roads, iteration_junctions, 2)
Filedump(phase_2_final_roads,'phase2')
################################################################################
Vprint('**Phase 3: Re-assign attribute data**')
#Prep Attribute data as centroids of line features
IRI = pd.read_csv(os.path.join(runtime,RawLines))
gIRI = gpd.GeoDataFrame(IRI, crs = crs_in, geometry = IRI['Line_Geometry'].map(shapely.wkt.loads))
gIRI['centre'] = gIRI['geometry'].centroid
gIRI = gIRI.set_geometry('centre')
gIRI['time'] = pd.to_datetime(gIRI['time'],infer_datetime_format = True)
gIRI = gIRI[['time','speed','suspension','iri','centre']]
gIRI = gIRI.loc[
(gIRI['time'] > timethresh) &
(gIRI['speed'] > low_speed) &
(gIRI['speed'] < high_speed) &
(gIRI['suspension'].isin(acceptable_suspension_settings))
]
gIRI['geometry'] = gIRI['centre']
Vprint(' Prepare the Road network')
Network = phase_2_final_roads
Network['ID'] = Network.index
Network.columns = ['Line_Geometry','ID']
gNetwork = gpd.GeoDataFrame(Network, crs = crs_in, geometry = Network['Line_Geometry'].map(shapely.wkt.loads))
gNetwork['Buffer'] = gNetwork.geometry.apply(lambda g: g.buffer(bufwidth, cap_style=2))
gNetwork['geometry'] = gNetwork['Buffer']
Vprint(' Stitch on to new network the original IRI readings')
JoinIRI = gpd.sjoin(gNetwork, gIRI, how="inner",op='intersects')
JoinIRI = JoinIRI[['ID','Line_Geometry','speed','iri']]
JoinIRI = JoinIRI.groupby(['ID']).apply(lambda x: opIRI(x))
Network = Network.drop(['Buffer','geometry'], axis = 1).merge(JoinIRI, how = 'left', on= 'ID')
Vprint(' Stitch on to new network the original VPROMMS_ID tags')
VID = pd.read_csv(os.path.join(runtime, RawPoints))
VID = VID[['Point_Geometry','VPROMMS_ID']]
gVID = gpd.GeoDataFrame(VID, crs = crs_in, geometry = VID['Point_Geometry'].map(shapely.wkt.loads))
JoinVID = gpd.sjoin(gNetwork, gVID, how="inner",op='intersects')
JoinVID = JoinVID[['ID','VPROMMS_ID']]
JoinVID = JoinVID.groupby(['ID']).apply(lambda x: opVID(x))
Network = Network.merge(JoinVID, how = 'left', on= 'ID')
gNetwork = gpd.GeoDataFrame(Network, crs = crs_in, geometry = Network['Line_Geometry'].map(shapely.wkt.loads))
gNetwork = gNetwork.to_crs(crs_measure)
gNetwork['length'] = gNetwork['geometry'].apply(lambda x: (x.length)/1000).map(float)
Vprint(' Output the new files')
gNetwork = gNetwork.drop(['geometry'], axis = 1)
FileOut(gNetwork, 'Network')
FileOut(phase_2_final_junctions, 'Junctions')