forked from hybridgroup/gocv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dnn.go
490 lines (426 loc) · 13.8 KB
/
dnn.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
package gocv
/*
#include <stdlib.h>
#include "dnn.h"
*/
import "C"
import (
"image"
"reflect"
"unsafe"
)
// Net allows you to create and manipulate comprehensive artificial neural networks.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html
//
type Net struct {
// C.Net
p unsafe.Pointer
}
// NetBackendType is the type for the various different kinds of DNN backends.
type NetBackendType int
const (
// NetBackendDefault is the default backend.
NetBackendDefault NetBackendType = 0
// NetBackendHalide is the Halide backend.
NetBackendHalide NetBackendType = 1
// NetBackendOpenVINO is the OpenVINO backend.
NetBackendOpenVINO NetBackendType = 2
// NetBackendOpenCV is the OpenCV backend.
NetBackendOpenCV NetBackendType = 3
// NetBackendVKCOM is the Vulkan backend.
NetBackendVKCOM NetBackendType = 4
// NetBackendCUDA is the Cuda backend.
NetBackendCUDA NetBackendType = 5
)
// ParseNetBackend returns a valid NetBackendType given a string. Valid values are:
// - halide
// - openvino
// - opencv
// - vulkan
// - cuda
// - default
func ParseNetBackend(backend string) NetBackendType {
switch backend {
case "halide":
return NetBackendHalide
case "openvino":
return NetBackendOpenVINO
case "opencv":
return NetBackendOpenCV
case "vulkan":
return NetBackendVKCOM
case "cuda":
return NetBackendCUDA
default:
return NetBackendDefault
}
}
// NetTargetType is the type for the various different kinds of DNN device targets.
type NetTargetType int
const (
// NetTargetCPU is the default CPU device target.
NetTargetCPU NetTargetType = 0
// NetTargetFP32 is the 32-bit OpenCL target.
NetTargetFP32 NetTargetType = 1
// NetTargetFP16 is the 16-bit OpenCL target.
NetTargetFP16 NetTargetType = 2
// NetTargetVPU is the Movidius VPU target.
NetTargetVPU NetTargetType = 3
// NetTargetVulkan is the NVIDIA Vulkan target.
NetTargetVulkan NetTargetType = 4
// NetTargetFPGA is the FPGA target.
NetTargetFPGA NetTargetType = 5
// NetTargetCUDA is the CUDA target.
NetTargetCUDA NetTargetType = 6
// NetTargetCUDAFP16 is the CUDA target.
NetTargetCUDAFP16 NetTargetType = 7
)
// ParseNetTarget returns a valid NetTargetType given a string. Valid values are:
// - cpu
// - fp32
// - fp16
// - vpu
// - vulkan
// - fpga
// - cuda
// - cudafp16
func ParseNetTarget(target string) NetTargetType {
switch target {
case "cpu":
return NetTargetCPU
case "fp32":
return NetTargetFP32
case "fp16":
return NetTargetFP16
case "vpu":
return NetTargetVPU
case "vulkan":
return NetTargetVulkan
case "fpga":
return NetTargetFPGA
case "cuda":
return NetTargetCUDA
case "cudafp16":
return NetTargetCUDAFP16
default:
return NetTargetCPU
}
}
// Close Net
func (net *Net) Close() error {
C.Net_Close((C.Net)(net.p))
net.p = nil
return nil
}
// Empty returns true if there are no layers in the network.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html#a6a5778787d5b8770deab5eda6968e66c
//
func (net *Net) Empty() bool {
return bool(C.Net_Empty((C.Net)(net.p)))
}
// SetInput sets the new value for the layer output blob.
//
// For further details, please see:
// https://docs.opencv.org/trunk/db/d30/classcv_1_1dnn_1_1Net.html#a672a08ae76444d75d05d7bfea3e4a328
//
func (net *Net) SetInput(blob Mat, name string) {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
C.Net_SetInput((C.Net)(net.p), blob.p, cName)
}
// Forward runs forward pass to compute output of layer with name outputName.
//
// For further details, please see:
// https://docs.opencv.org/trunk/db/d30/classcv_1_1dnn_1_1Net.html#a98ed94cb6ef7063d3697259566da310b
//
func (net *Net) Forward(outputName string) Mat {
cName := C.CString(outputName)
defer C.free(unsafe.Pointer(cName))
return newMat(C.Net_Forward((C.Net)(net.p), cName))
}
// ForwardLayers forward pass to compute outputs of layers listed in outBlobNames.
//
// For further details, please see:
// https://docs.opencv.org/3.4.1/db/d30/classcv_1_1dnn_1_1Net.html#adb34d7650e555264c7da3b47d967311b
//
func (net *Net) ForwardLayers(outBlobNames []string) (blobs []Mat) {
cMats := C.struct_Mats{}
C.Net_ForwardLayers((C.Net)(net.p), &(cMats), toCStrings(outBlobNames))
blobs = make([]Mat, cMats.length)
for i := C.int(0); i < cMats.length; i++ {
blobs[i].p = C.Mats_get(cMats, i)
}
return
}
// SetPreferableBackend ask network to use specific computation backend.
//
// For further details, please see:
// https://docs.opencv.org/3.4/db/d30/classcv_1_1dnn_1_1Net.html#a7f767df11386d39374db49cd8df8f59e
//
func (net *Net) SetPreferableBackend(backend NetBackendType) error {
C.Net_SetPreferableBackend((C.Net)(net.p), C.int(backend))
return nil
}
// SetPreferableTarget ask network to make computations on specific target device.
//
// For further details, please see:
// https://docs.opencv.org/3.4/db/d30/classcv_1_1dnn_1_1Net.html#a9dddbefbc7f3defbe3eeb5dc3d3483f4
//
func (net *Net) SetPreferableTarget(target NetTargetType) error {
C.Net_SetPreferableTarget((C.Net)(net.p), C.int(target))
return nil
}
// ReadNet reads a deep learning network represented in one of the supported formats.
//
// For further details, please see:
// https://docs.opencv.org/3.4/d6/d0f/group__dnn.html#ga3b34fe7a29494a6a4295c169a7d32422
//
func ReadNet(model string, config string) Net {
cModel := C.CString(model)
defer C.free(unsafe.Pointer(cModel))
cConfig := C.CString(config)
defer C.free(unsafe.Pointer(cConfig))
return Net{p: unsafe.Pointer(C.Net_ReadNet(cModel, cConfig))}
}
// ReadNetBytes reads a deep learning network represented in one of the supported formats.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#ga138439da76f26266fdefec9723f6c5cd
//
func ReadNetBytes(framework string, model []byte, config []byte) (Net, error) {
cFramework := C.CString(framework)
defer C.free(unsafe.Pointer(cFramework))
bModel, err := toByteArray(model)
if err != nil {
return Net{}, err
}
bConfig, err := toByteArray(config)
if err != nil {
return Net{}, err
}
return Net{p: unsafe.Pointer(C.Net_ReadNetBytes(cFramework, *bModel, *bConfig))}, nil
}
// ReadNetFromCaffe reads a network model stored in Caffe framework's format.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#ga29d0ea5e52b1d1a6c2681e3f7d68473a
//
func ReadNetFromCaffe(prototxt string, caffeModel string) Net {
cprototxt := C.CString(prototxt)
defer C.free(unsafe.Pointer(cprototxt))
cmodel := C.CString(caffeModel)
defer C.free(unsafe.Pointer(cmodel))
return Net{p: unsafe.Pointer(C.Net_ReadNetFromCaffe(cprototxt, cmodel))}
}
// ReadNetFromCaffeBytes reads a network model stored in Caffe model in memory.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#ga946b342af1355185a7107640f868b64a
//
func ReadNetFromCaffeBytes(prototxt []byte, caffeModel []byte) (Net, error) {
bPrototxt, err := toByteArray(prototxt)
if err != nil {
return Net{}, err
}
bCaffeModel, err := toByteArray(caffeModel)
if err != nil {
return Net{}, err
}
return Net{p: unsafe.Pointer(C.Net_ReadNetFromCaffeBytes(*bPrototxt, *bCaffeModel))}, nil
}
// ReadNetFromTensorflow reads a network model stored in Tensorflow framework's format.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#gad820b280978d06773234ba6841e77e8d
//
func ReadNetFromTensorflow(model string) Net {
cmodel := C.CString(model)
defer C.free(unsafe.Pointer(cmodel))
return Net{p: unsafe.Pointer(C.Net_ReadNetFromTensorflow(cmodel))}
}
// ReadNetFromTensorflowBytes reads a network model stored in Tensorflow framework's format.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#gacdba30a7c20db2788efbf5bb16a7884d
//
func ReadNetFromTensorflowBytes(model []byte) (Net, error) {
bModel, err := toByteArray(model)
if err != nil {
return Net{}, err
}
return Net{p: unsafe.Pointer(C.Net_ReadNetFromTensorflowBytes(*bModel))}, nil
}
// BlobFromImage creates 4-dimensional blob from image. Optionally resizes and crops
// image from center, subtract mean values, scales values by scalefactor,
// swap Blue and Red channels.
//
// For further details, please see:
// https://docs.opencv.org/trunk/d6/d0f/group__dnn.html#ga152367f253c81b53fe6862b299f5c5cd
//
func BlobFromImage(img Mat, scaleFactor float64, size image.Point, mean Scalar,
swapRB bool, crop bool) Mat {
sz := C.struct_Size{
width: C.int(size.X),
height: C.int(size.Y),
}
sMean := C.struct_Scalar{
val1: C.double(mean.Val1),
val2: C.double(mean.Val2),
val3: C.double(mean.Val3),
val4: C.double(mean.Val4),
}
return newMat(C.Net_BlobFromImage(img.p, C.double(scaleFactor), sz, sMean, C.bool(swapRB), C.bool(crop)))
}
// BlobFromImages Creates 4-dimensional blob from series of images.
// Optionally resizes and crops images from center, subtract mean values,
// scales values by scalefactor, swap Blue and Red channels.
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#ga2b89ed84432e4395f5a1412c2926293c
//
func BlobFromImages(imgs []Mat, blob *Mat, scaleFactor float64, size image.Point, mean Scalar,
swapRB bool, crop bool, ddepth MatType) {
cMatArray := make([]C.Mat, len(imgs))
for i, r := range imgs {
cMatArray[i] = r.p
}
cMats := C.struct_Mats{
mats: (*C.Mat)(&cMatArray[0]),
length: C.int(len(imgs)),
}
sz := C.struct_Size{
width: C.int(size.X),
height: C.int(size.Y),
}
sMean := C.struct_Scalar{
val1: C.double(mean.Val1),
val2: C.double(mean.Val2),
val3: C.double(mean.Val3),
val4: C.double(mean.Val4),
}
C.Net_BlobFromImages(cMats, blob.p, C.double(scaleFactor), sz, sMean, C.bool(swapRB), C.bool(crop), C.int(ddepth))
}
// ImagesFromBlob Parse a 4D blob and output the images it contains as
// 2D arrays through a simpler data structure (std::vector<cv::Mat>).
//
// For further details, please see:
// https://docs.opencv.org/master/d6/d0f/group__dnn.html#ga4051b5fa2ed5f54b76c059a8625df9f5
//
func ImagesFromBlob(blob Mat, imgs []Mat) {
cMats := C.struct_Mats{}
C.Net_ImagesFromBlob(blob.p, &(cMats))
// mv = make([]Mat, cMats.length)
for i := C.int(0); i < cMats.length; i++ {
imgs[i].p = C.Mats_get(cMats, i)
}
}
// GetBlobChannel extracts a single (2d)channel from a 4 dimensional blob structure
// (this might e.g. contain the results of a SSD or YOLO detection,
// a bones structure from pose detection, or a color plane from Colorization)
//
func GetBlobChannel(blob Mat, imgidx int, chnidx int) Mat {
return newMat(C.Net_GetBlobChannel(blob.p, C.int(imgidx), C.int(chnidx)))
}
// GetBlobSize retrieves the 4 dimensional size information in (N,C,H,W) order
//
func GetBlobSize(blob Mat) Scalar {
s := C.Net_GetBlobSize(blob.p)
return NewScalar(float64(s.val1), float64(s.val2), float64(s.val3), float64(s.val4))
}
// Layer is a wrapper around the cv::dnn::Layer algorithm.
type Layer struct {
// C.Layer
p unsafe.Pointer
}
// GetLayer returns pointer to layer with specified id from the network.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html#a70aec7f768f38c32b1ee25f3a56526df
//
func (net *Net) GetLayer(layer int) Layer {
return Layer{p: unsafe.Pointer(C.Net_GetLayer((C.Net)(net.p), C.int(layer)))}
}
// GetPerfProfile returns overall time for inference and timings (in ticks) for layers
//
// For further details, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html#a06ce946f675f75d1c020c5ddbc78aedc
//
func (net *Net) GetPerfProfile() float64 {
return float64(C.Net_GetPerfProfile((C.Net)(net.p)))
}
// GetUnconnectedOutLayers returns indexes of layers with unconnected outputs.
//
// For further details, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html#ae62a73984f62c49fd3e8e689405b056a
//
func (net *Net) GetUnconnectedOutLayers() (ids []int) {
cids := C.IntVector{}
C.Net_GetUnconnectedOutLayers((C.Net)(net.p), &cids)
h := &reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(cids.val)),
Len: int(cids.length),
Cap: int(cids.length),
}
pcids := *(*[]int)(unsafe.Pointer(h))
for i := 0; i < int(cids.length); i++ {
ids = append(ids, int(pcids[i]))
}
return
}
// GetLayerNames returns all layer names.
//
// For furtherdetails, please see:
// https://docs.opencv.org/master/db/d30/classcv_1_1dnn_1_1Net.html#ae8be9806024a0d1d41aba687cce99e6b
//
func (net *Net) GetLayerNames() (names []string) {
cstrs := C.CStrings{}
C.Net_GetLayerNames((C.Net)(net.p), &cstrs)
h := &reflect.SliceHeader{
Data: uintptr(unsafe.Pointer(cstrs.strs)),
Len: int(cstrs.length),
Cap: int(cstrs.length),
}
pcstrs := *(*[]string)(unsafe.Pointer(h))
for i := 0; i < int(cstrs.length); i++ {
names = append(names, string(pcstrs[i]))
}
return
}
// Close Layer
func (l *Layer) Close() error {
C.Layer_Close((C.Layer)(l.p))
l.p = nil
return nil
}
// GetName returns name for this layer.
func (l *Layer) GetName() string {
return C.GoString(C.Layer_GetName((C.Layer)(l.p)))
}
// GetType returns type for this layer.
func (l *Layer) GetType() string {
return C.GoString(C.Layer_GetType((C.Layer)(l.p)))
}
// InputNameToIndex returns index of input blob in input array.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d6c/classcv_1_1dnn_1_1Layer.html#a60ffc8238f3fa26cd3f49daa7ac0884b
//
func (l *Layer) InputNameToIndex(name string) int {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
return int(C.Layer_InputNameToIndex((C.Layer)(l.p), cName))
}
// OutputNameToIndex returns index of output blob in output array.
//
// For further details, please see:
// https://docs.opencv.org/master/d3/d6c/classcv_1_1dnn_1_1Layer.html#a60ffc8238f3fa26cd3f49daa7ac0884b
//
func (l *Layer) OutputNameToIndex(name string) int {
cName := C.CString(name)
defer C.free(unsafe.Pointer(cName))
return int(C.Layer_OutputNameToIndex((C.Layer)(l.p), cName))
}