forked from pancerZH/PCA_with_mnist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTDPCA.py
107 lines (94 loc) · 2.83 KB
/
TDPCA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
from PIL import Image
'''
imgs 是三维的图像矩阵,第一维是图像的个数
'''
def TwoDPCA(imgs, dim):
a,b,c = imgs.shape
average = np.zeros((b,c))
for i in range(a):
average += imgs[i,:,:]/(a*1.0)
G_t = np.zeros((c,c))
for j in range(a):
img = imgs[j,:,:]
temp = img-average
G_t = G_t + np.dot(temp.T,temp)/(a*1.0)
w,v = np.linalg.eigh(G_t)
# print('v_shape:{}'.format(v.shape))
w = w[::-1]
v = v[::-1]
'''
for k in range(c):
# alpha = sum(w[:k])*1.0/sum(w)
alpha = 0
if alpha >= p:
u = v[:,:k]
break
'''
print('alpha={}'.format(sum(w[:dim]*1.0/sum(w))))
u = v[:,:dim]
print('u_shape:{}'.format(u.shape))
return u # u是投影矩阵
def TTwoDPCA(imgs, dim):
u = TwoDPCA(imgs, dim)
a1,b1,c1 = imgs.shape
img = []
for i in range(a1):
temp1 = np.dot(imgs[i,:,:],u)
img.append(temp1.T)
img = np.array(img)
uu = TwoDPCA(img, dim)
print('uu_shape:{}'.format(uu.shape))
return u,uu # uu是投影矩阵
def PCA2D_2D(samples, row_top, col_top):
'''samples are 2d matrices'''
size = samples[0].shape
# m*n matrix
mean = np.zeros(size)
for s in samples:
mean = mean + s
# get the mean of all samples
mean /= float(len(samples))
# n*n matrix
cov_row = np.zeros((size[1],size[1]))
for s in samples:
diff = s - mean
cov_row = cov_row + np.dot(diff.T, diff)
cov_row /= float(len(samples))
row_eval, row_evec = np.linalg.eig(cov_row)
# select the top t evals
sorted_index = np.argsort(row_eval)
# using slice operation to reverse
X = row_evec[:,sorted_index[:-row_top-1 : -1]]
# m*m matrix
cov_col = np.zeros((size[0], size[0]))
for s in samples:
diff = s - mean
cov_col += np.dot(diff,diff.T)
cov_col /= float(len(samples))
col_eval, col_evec = np.linalg.eig(cov_col)
sorted_index = np.argsort(col_eval)
Z = col_evec[:,sorted_index[:-col_top-1 : -1]]
return X, Z
def image_2D2DPCA(images, u, uu):
a, b, c = images.shape
new_images = np.ones((a, uu.shape[1], u.shape[1]))
for i in range(a):
Y = np.dot(uu.T, images[i,:,:])
Y = np.dot(Y, u)
new_images[i,:,:] = Y
return new_images
if __name__ == '__main__':
im = Image.open('./bloodborne2.jpg')
im_grey = im.convert('L')
# im_grey.save('a.png')
a, b = np.shape(im_grey)
data = im_grey.getdata()
data = np.array(data)
data2 = data.reshape(1, a, b)
print('data2_shape:{}'.format(data2.shape))
u, uu = TTwoDPCA(data2, 10)
print('data2_2DPCA_u:{}'.format(u.shape))
print('data2_2D2DPCA_uu:{}'.format(uu.shape))
new_images = image_2D2DPCA(data2, u, uu)
print('new_images:{}'.format(new_images.shape))