-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathserver.py
305 lines (220 loc) · 10.5 KB
/
server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import numpy as np
import random
import networkx as nx
from dtaidistance import dtw
class Server():
def __init__(self, model, device):
self.model = model.to(device)
self.W = {key: value for key, value in self.model.named_parameters()}
self.model_cache = []
self.vocab = {}
self.device = device
self.whole_node_count = {}
self.num_client = {}
self.global_prototype = {}
self.global_prototype_code = {}
self.weight = {}
self.code_prototype = {}
self.code = {}
def randomSample_clients(self, all_clients, frac):
return random.sample(all_clients, int(len(all_clients) * frac))
def aggregate_weights(self, selected_clients):
# pass train_size, and weighted aggregate
total_size = 0
for client in selected_clients:
total_size += client.train_size
for k in self.W.keys():
self.W[k].data = torch.div(torch.sum(torch.stack([torch.mul(client.W[k].data, client.train_size) for client in selected_clients]), dim=0), total_size).clone()
def compute_pairwise_similarities(self, clients):
client_dWs = []
for client in clients:
dW = {}
for k in self.W.keys():
dW[k] = client.dW[k]
client_dWs.append(dW)
return pairwise_angles(client_dWs)
def compute_pairwise_distances(self, seqs, standardize=False):
""" computes DTW distances """
if standardize:
# standardize to only focus on the trends
seqs = np.array(seqs)
seqs = seqs / seqs.std(axis=1).reshape(-1, 1)
distances = dtw.distance_matrix(seqs)
else:
distances = dtw.distance_matrix(seqs)
return distances
def min_cut(self, similarity, idc):
g = nx.Graph()
for i in range(len(similarity)):
for j in range(len(similarity)):
g.add_edge(i, j, weight=similarity[i][j])
cut, partition = nx.stoer_wagner(g)
c1 = np.array([idc[x] for x in partition[0]])
c2 = np.array([idc[x] for x in partition[1]])
return c1, c2
def aggregate_clusterwise(self, client_clusters):
for cluster in client_clusters:
targs = []
sours = []
total_size = 0
for client in cluster:
W = {}
dW = {}
for k in self.W.keys():
W[k] = client.W[k]
dW[k] = client.dW[k]
targs.append(W)
sours.append((dW, client.train_size))
total_size += client.train_size
# pass train_size, and weighted aggregate
reduce_add_average(targets=targs, sources=sours, total_size=total_size)
def compute_max_update_norm(self, cluster):
max_dW = -np.inf
for client in cluster:
dW = {}
for k in self.W.keys():
dW[k] = client.dW[k]
update_norm = torch.norm(flatten(dW)).item()
if update_norm > max_dW:
max_dW = update_norm
return max_dW
# return np.max([torch.norm(flatten(client.dW)).item() for client in cluster])
def compute_mean_update_norm(self, cluster):
cluster_dWs = []
for client in cluster:
dW = {}
for k in self.W.keys():
dW[k] = client.dW[k]
cluster_dWs.append(flatten(dW))
return torch.norm(torch.mean(torch.stack(cluster_dWs), dim=0)).item()
def cache_model(self, idcs, params, accuracies):
self.model_cache += [(idcs,
{name: params[name].data.clone() for name in params},
[accuracies[i] for i in idcs])]
def aggregate_prototype(self, clients):
for client in clients:
for key in client.motif_count.keys():
if key not in self.vocab.keys():
self.vocab[key] = client.motif_count[key]
self.num_client[key] = 1
else:
self.vocab[key] += client.motif_count[key]
self.num_client[key] += 1
for client in clients:
for key in client.motif_count.keys():
if key not in self.global_prototype.keys():
self.global_prototype[key] = client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
else:
self.global_prototype[key] += client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
for key in self.global_prototype.keys():
self.global_prototype[key] = self.global_prototype[key].data
for i, motif in enumerate(list(self.global_prototype.keys())):
self.global_prototype_code[motif] = i
self.code[i] = motif
def aggregate_code(self, clients):
for client in clients:
for key in client.motif_count.keys():
if key not in self.vocab.keys():
self.vocab[key] = client.motif_count[key]
self.num_client[key] = 1
else:
self.vocab[key] += client.motif_count[key]
self.num_client[key] += 1
for client in clients:
for key in client.motif_count.keys():
if key not in self.global_prototype.keys():
self.global_prototype[key] = client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
else:
self.global_prototype[key] += client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
for key in self.global_prototype.keys():
self.global_prototype[key] = self.global_prototype[key].data
for i, motif in enumerate(list(self.global_prototype.keys())):
self.global_prototype_code[motif] = i
self.code[i] = motif
def reput_aggregate_prototype(self, rs, clients):
for i, client in enumerate(clients):
for key in client.motif_count.keys():
#weight = 0
if key not in self.global_prototype.keys():
self.global_prototype[key] = rs[i] * client.prototype[key]
self.weight[key] = rs[i]
else:
self.global_prototype[key] += rs[i] * client.prototype[key]
self.weight[key] += rs[i]
for key in self.global_prototype.keys():
self.global_prototype[key] /= self.weight[key]
for key in self.global_prototype.keys():
self.global_prototype[key] = self.global_prototype[key].data
for i, motif in enumerate(list(self.global_prototype.keys())):
self.global_prototype_code[motif] = i
self.code[i] = motif
def reput_aggregate_prototype2(self, rs, clients):
for i, client in enumerate(clients):
for key in client.motif_count.keys():
#weight = 0
if key not in self.global_prototype.keys():
self.global_prototype[key] = client.rs[key] * client.prototype[key]
self.weight[key] = client.rs[key]
else:
self.global_prototype[key] += client.rs[key] * client.prototype[key]
self.weight[key] += client.rs[key]
for key in self.global_prototype.keys():
self.global_prototype[key] /= self.weight[key]
for key in self.global_prototype.keys():
self.global_prototype[key] = self.global_prototype[key].data
for i, motif in enumerate(list(self.global_prototype.keys())):
self.global_prototype_code[motif] = i
self.code[i] = motif
def update_reput(self, clients):
for key in self.global_prototype.keys():
weight = 0
for client in clients:
if key in client.rs.keys():
weight += client.rs[key]
for client in clients:
if key in client.rs.keys():
client.rs[key] /= weight
def reput3_prototype(self, clients):
for client in clients:
for key in client.motif_count.keys():
if key not in self.vocab.keys():
self.vocab[key] = client.motif_count[key]
self.num_client[key] = 1
else:
self.vocab[key] += client.motif_count[key]
self.num_client[key] += 1
for i, client in enumerate(clients):
for key in client.motif_count.keys():
if key not in self.global_prototype.keys():
self.global_prototype[key] = client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
else:
self.global_prototype[key] += client.motif_count[key] / self.vocab[key] * client.prototype[key] / self.num_client[key]
for key in self.global_prototype.keys():
self.global_prototype[key] = self.global_prototype[key].data
for i, motif in enumerate(list(self.global_prototype.keys())):
self.global_prototype_code[motif] = i
self.code[i] = motif
def clear_prototype(self):
self.vocab = {}
self.whole_node_count = {}
self.num_client = {}
self.global_prototype = {}
self.global_prototype_code = {}
self.code_prototype = {}
self.weight = {}
def flatten(source):
return torch.cat([value.flatten() for value in source.values()])
def pairwise_angles(sources):
angles = torch.zeros([len(sources), len(sources)])
for i, source1 in enumerate(sources):
for j, source2 in enumerate(sources):
s1 = flatten(source1)
s2 = flatten(source2)
angles[i, j] = torch.true_divide(torch.sum(s1 * s2), max(torch.norm(s1) * torch.norm(s2), 1e-12)) + 1
return angles.numpy()
def reduce_add_average(targets, sources, total_size):
for target in targets:
for name in target:
tmp = torch.div(torch.sum(torch.stack([torch.mul(source[0][name].data, source[1]) for source in sources]), dim=0), total_size).clone()
target[name].data += tmp