Skip to content

Latest commit

 

History

History
66 lines (59 loc) · 2.15 KB

README.md

File metadata and controls

66 lines (59 loc) · 2.15 KB

Radar-Detection with Yolov8

Self-Driving Cars Project for NYCU Courses, Fall 2023

Objectives

Used existing radar images to train a detector with the goal of recognizing various vehicles in the images (e.g., trucks, minibuses, bicycles, buses)

Bonus

Verified model performance using data from Guangfu Road, Hsinchu, Taiwan

Complete File Structure - vehicle_detection

├── bonus_data
│   ├── images
│   │   ├── train
│   │   └──  val
│   ├── labels
│   │   ├── train
│   │   └──  val
│   └── train_data # train_data from google drive bonus folder
│       └── ...
├── runs
│   └── dectect # weights will be saved here
├── ultralytics # tools for yolo
│   └── ...
├── yolo_best # best weights and json for competition and bonus
│   ├── yolov8l_bonus_train6_best_pred.json
│   ├── yolov8l_bonus.pt
│   ├── yolov8m_.json
│   └── yolov8m_.pt
├── yolov8_dataset
│   ├── images
│   │   ├── train
│   │   └──  val
│   └── labels
│       ├── train
│       └──  val
├── all_eva #Evaluation code
├── data_process_bonus.ipynb # generate labels for traning bonus model
├── data_process.ipynb # generate labels for traning competition model
├── dataset.yaml
├── README.md
├── weights_to_json.py
├── yolov8l.pt
├── yolov8m.pt
├── yolov8n.pt
├── yolov8s.pt
└── yolov8x.pt

Yolov8m Hyperparameters and Configurations

The best model performance was achieved using YOLOv8m.

parameters default value optimizer value
epochs 100 65
optimizer auto Adam
learning rate(lr0) 0.01 0.0001
patience 50 25
augmentation True True
batch size 16 16

Result Demo

video : https://youtu.be/BmGU1UOnfzY

License

This project is released under the MIT License.