-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathclam.py
347 lines (275 loc) · 15.6 KB
/
clam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# -*- coding: utf-8 -*-
"""
Created on Tue Sep 12 19:34:41 2023
@author: Xiwen Chen
"""
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 10 19:25:56 2023
@author: Xiwen Chen
"""
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms.functional as VF
from torchvision import transforms
import sys, argparse, os, copy, itertools, glob, datetime
import pandas as pd
import numpy as np
#from tqdm import tqdm
from sklearn.utils import shuffle
from sklearn.metrics import roc_curve, roc_auc_score, precision_recall_fscore_support,f1_score
from sklearn.datasets import load_svmlight_file
from collections import OrderedDict
from models.dropout import LinearScheduler
from utils import *
from wsi_dataloader_3 import C16DatasetV3,C16DatasetV4,dropout_patches,C16DatasetV3_tcga
from torch.cuda.amp import GradScaler, autocast
import torch.nn.functional as F
from sample_method import rd_torch,dpp
import random
from lookhead import Lookahead
import warnings
from models.model_clam import CLAM_MB, CLAM_SB
from loss import contrastiveloss
# Suppress all warnings
warnings.filterwarnings("ignore")
from scheduler import LinearWarmupCosineAnnealingLR
def train(trainloader, milnet, criterion, optimizer, epoch, start,args):
milnet.train()
total_loss = 0
bc = 0
loss_l1 = nn.L1Loss()
for batch_id, (feats,label) in enumerate(trainloader):
# bag = bag[0]
# feats = bag['feat']
# label = bag['label']
# bag_name = bag['name'][0]
bag_feats = feats.cuda().squeeze(0)
bag_label = label.cuda().squeeze(0)
bag_label = torch.argmax(bag_label, keepdim=True)
#bag_feats = feats.cuda()
#bag_label = label.cuda()
# bag_label = bag_label.repeat(args.num_les, 1)
# print(bag_label)
# bag_feats = bag_feats.view(-1, args.feats_size)
optimizer.zero_grad()
# bag_prediction, A,H = milnet(bag_feats)
logits, Y_prob, Y_hat, results_dict = milnet(h=bag_feats, label=bag_label)
#logits, Y_prob, Y_hat, results_dict = milnet(bag_feats)
# print(logits.size(), bag_label.size())
inst_loss = results_dict["instance_loss"]
bag_loss = criterion(logits.view(1, -1), bag_label.view(-1))
# if torch.argmax(label)==0:
# bag_prediction, A,H,p_center,nc_center,lesion = milnet(bag_feats,bag_mode='normal')
# #l1 = loss_l1(nc_center,o)
# else:
# bag_prediction, A,H,p_center,nc_center,lesion= milnet(bag_feats,bag_mode='abnormal')
# #l1 = loss_l1(p_center,o)
# bag_loss = criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
# bag_loss = criterion(bag_prediction, bag_label)
#bag_loss2 = criterion(cls2.view(1, -1), bag_label.view(1, -1))
#p_loss
# p_loss = criterion(g ,bag_label.repeat(args.num_les, 1))
#L1_penalty = torch.norm(im, 1)
loss = bag_loss + 0.3 * inst_loss
loss.backward()
# loss.backward()
#scaler.unscale_(optimizer)
#torch.nn.utils.clip_grad_norm_(milnet.parameters(), 5.0)
#torch.nn.utils.clip_grad_norm_(milnet.parameters(), 2.0)
optimizer.step()
# total_loss = total_loss + loss.item()
total_loss = total_loss + bag_loss
# sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f sim loss: %.7f div loss: %.7f p loss: %.4f total loss: %.4f' % \
# (batch_id, len(trainloader), bag_loss.item(), sim_loss.item(),div_loss.item(),p_loss.item(),loss.item()))
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f total loss: %.4f' % \
(batch_id, len(trainloader), bag_loss.item(),loss.item()))
return total_loss / len(trainloader)
def test(testloader, milnet, criterion, args):
milnet.eval()
# csvs = shuffle(test_df).reset_index(drop=True)
total_loss = 0
test_labels = []
test_predictions = []
with torch.no_grad():
for batch_id, (feats,label) in enumerate(testloader):
# (feats, label)
# bag = bag[0]
# feats = bag['feat']
# label = bag['label']
# bag_name = bag['name']
bag_feats = feats.cuda().squeeze(0)
bag_label = label.cuda().squeeze(0)
bag_label = torch.argmax(bag_label, keepdim=True)
# print(bag_label)
# bag_feats = bag_feats.view(-1, args.feats_size)
logits, Y_prob, Y_hat, results_dict = milnet(h=bag_feats, label=bag_label)
#logits, Y_prob, Y_hat, results_dict = milnet(bag_feats)
bag_loss = criterion(logits.view(1, -1), bag_label.view(-1))
loss = bag_loss
total_loss = total_loss + loss.item()
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (batch_id, len(testloader), loss.item()))
test_labels.extend([label.squeeze().cpu().numpy()])
# if args.average:
# test_predictions.extend([(0.5*torch.sigmoid(max_prediction)+0.5*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
# else:
# test_predictions.extend([(0.0*torch.sigmoid(max_prediction)+1.0*torch.sigmoid(bag_prediction)).squeeze().cpu().numpy()])
test_predictions.extend([Y_prob.squeeze().cpu().numpy()])
test_labels = np.array(test_labels)
test_predictions = np.array(test_predictions)
# print(test_labels)
auc_value, _, thresholds_optimal = multi_label_roc(test_labels, test_predictions, args.num_classes, pos_label=1)
if args.num_classes==1:
class_prediction_bag = copy.deepcopy(test_predictions)
class_prediction_bag[test_predictions>=thresholds_optimal[0]] = 1
class_prediction_bag[test_predictions<thresholds_optimal[0]] = 0
test_predictions = class_prediction_bag
test_labels = np.squeeze(test_labels)
else:
for i in range(args.num_classes):
class_prediction_bag = copy.deepcopy(test_predictions[:, i])
class_prediction_bag[test_predictions[:, i]>=thresholds_optimal[i]] = 1
class_prediction_bag[test_predictions[:, i]<thresholds_optimal[i]] = 0
test_predictions[:, i] = class_prediction_bag
bag_score = 0
for i in range(0, len(testloader)):
bag_score = np.array_equal(test_labels[i], test_predictions[i]) + bag_score
avg_score = bag_score / len(testloader)
f1 = f1_score(test_labels,test_predictions,average='macro')
print(f1)
return total_loss / len(testloader), avg_score, auc_value, thresholds_optimal,f1
def multi_label_roc(labels, predictions, num_classes, pos_label=1):
fprs = []
tprs = []
thresholds = []
thresholds_optimal = []
aucs = []
if len(predictions.shape)==1:
predictions = predictions[:, None]
for c in range(0, num_classes):
label = labels[:, c]
prediction = predictions[:, c]
fpr, tpr, threshold = roc_curve(label, prediction, pos_label=1)
fpr_optimal, tpr_optimal, threshold_optimal = optimal_thresh(fpr, tpr, threshold)
c_auc = roc_auc_score(label, prediction)
aucs.append(c_auc)
thresholds.append(threshold)
thresholds_optimal.append(threshold_optimal)
return aucs, thresholds, thresholds_optimal
def optimal_thresh(fpr, tpr, thresholds, p=0):
loss = (fpr - tpr) - p * tpr / (fpr + tpr + 1)
idx = np.argmin(loss, axis=0)
return fpr[idx], tpr[idx], thresholds[idx]
def main():
parser = argparse.ArgumentParser(description='Train DSMIL on 20x patch features learned by Resnet50')
parser.add_argument('--dataroot', default="dataset/c16/imagenet", type=str, help='dataroot for the CAMELYON16 dataset')
parser.add_argument('--backgrd_thres', default=30, type=int, help='background threshold')
parser.add_argument('--num_classes', default=2, type=int, help='Number of output classes [2]')
parser.add_argument('--num_workers', default=4, type=int, help='number of workers used in dataloader [4]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512] resnet-50 1024')
parser.add_argument('--lr', default=1e-4, type=float, help='Initial learning rate [0.0002]')
parser.add_argument('--num_epochs', default=200, type=int, help='Number of total training epochs [40|200]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--weight_decay', default=1e-5, type=float, help='Weight decay [5e-3]')
parser.add_argument('--model', default='lamil', type=str, help='MIL model [dsmil]')
parser.add_argument('--dropout_patch', default=0., type=float, help='Patch dropout rate [0] 0.4')
parser.add_argument('--dropout_node', default=0.4, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--non_linearity', default=1, type=float, help='Additional nonlinear operation [0]')
parser.add_argument('--num_cluster', default=5, type=int, help='number of assumped clusters')
parser.add_argument('--num_les', default=5, type=int, help='number of representation for normal/lesion')
parser.add_argument('--num_normal', default=5, type=int, help='number of representation for normal/lesion')
parser.add_argument('--weight_div', default=0.2, type=float, help='weight for block loss default 0.0001')
parser.add_argument('--weight_des', default=0.01, type=float, help='weight for block loss default 0.0001')
parser.add_argument('--temp', default=0.2, type=float, help='Bag classifier dropout rate [0]')
parser.add_argument('--average', type=bool, default=True, help='Average the score of max-pooling and bag aggregating')
parser.add_argument('--seed', default='0', type=int, help='random seed')
parser.add_argument('--aggmode', default='mean', type=str, help='aggregation mode')
parser.add_argument('--optimizer', default='adamw', type=str, help='aggregation mode')
parser.add_argument('--epoch_contrastive', default=200, type=int, help='turn on contrastive learning')
parser.add_argument('--epoch_step', default='[100]', type=str)
parser.add_argument('--save_dir', default='./CLAM_SB_resnetimagenet/', type=str, help='the directory used to save all the output')
parser.add_argument('--epoch_des', default=10, type=int, help='turn on neg pos descrimination')
parser.add_argument('--mode', default='SB', type=str)
parser.add_argument('--fold', default='0', type=str, help='fold')
args = parser.parse_args()
gpu_ids = tuple(args.gpu_index)
os.environ['CUDA_VISIBLE_DEVICES']=','.join(str(x) for x in gpu_ids)
maybe_mkdir_p(join(args.save_dir, f'{args.model}'))
args.save_dir = make_dirs(join(args.save_dir, f'{args.model}'))
maybe_mkdir_p(args.save_dir)
# <------------- set up logging ------------->
logging_path = os.path.join(args.save_dir, 'Train_log.log')
logger = get_logger(logging_path)
# <------------- save hyperparams ------------->
option = vars(args)
file_name = os.path.join(args.save_dir, 'option.txt')
with open(file_name, 'wt') as opt_file:
opt_file.write('------------ Options -------------\n')
for k, v in sorted(option.items()):
opt_file.write('%s: %s\n' % (str(k), str(v)))
opt_file.write('-------------- End ----------------\n')
criterion = nn.CrossEntropyLoss()
# <------------- define MIL network ------------->
if args.mode == 'SB':
milnet = CLAM_SB(feat_dim=args.feats_size).cuda()
else:
milnet = CLAM_MB(feat_dim=args.feats_size).cuda()
# if args.optimizer == 'adamw':
#optimizer = torch.optim.AdamW(milnet.parameters(), lr=args.lr, betas=(0.5, 0.9), weight_decay=args.weight_decay)
# elif args.optimizer == 'sgd':
#optimizer = torch.optim.SGD(milnet.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.weight_decay)
#optimizer =Lookahead(optimizer)
#scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs, 1e-5)
#scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, args.epoch_step, gamma=0.2)
# trainset = C16DatasetV3(args, 'train')
# testset = C16DatasetV3(args, 'test')
optimizer = torch.optim.Adam(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.num_epochs)
#optimizer = torch.optim.AdamW(milnet.parameters(), lr=args.lr, weight_decay=args.weight_decay)
#scheduler = LinearWarmupCosineAnnealingLR(optimizer,warmup_epochs=args.epoch_des,max_epochs=args.num_epochs,warmup_start_lr=0,eta_min=1e-5)
trainset = C16DatasetV3(args, 'train')
testset = C16DatasetV3(args, 'test')
#trainset = C16DatasetV3_tcga(args, 'train')
#testset = C16DatasetV3_tcga(args, 'test')
trainloader = DataLoader(trainset, 1, shuffle=True, num_workers=args.num_workers, drop_last=False, pin_memory=True)
testloader = DataLoader(testset, 1, shuffle=False, num_workers=args.num_workers, drop_last=False, pin_memory=True)
#dropout_schedule = LinearScheduler(milnet,start_value=0,stop_value=args.drop_p,nr_steps=args.num_epochs)
# train_path = pd.read_csv(join(args.dataroot, 'train_offical.csv'))
# test_path = pd.read_csv(join(args.dataroot, 'test_offical.csv'))
# train_path['subject_id'] = train_path['subject_id'].apply(lambda row: join(args.dataroot, 'single_b' + str(args.backgrd_thres), row + ".csv"))
# test_path['subject_id'] = test_path['subject_id'].apply(lambda row: join(args.dataroot, 'single_b' + str(args.backgrd_thres), row + ".csv"))
best_score = 0
save_path = join(args.save_dir, 'weights')
os.makedirs(save_path, exist_ok=True)
for epoch in range(1, args.num_epochs + 1):
#dropout_schedule.step()
# train_path = shuffle(train_path).reset_index(drop=True)
# test_path = shuffle(test_path).reset_index(drop=True)
start = False
if best_score > 0.8:
start = True
else:
start = False
train_loss_bag = train(trainloader, milnet, criterion, optimizer, epoch,start,args) # iterate all bags
test_loss_bag, avg_score, aucs, thresholds_optimal,f1 = test(testloader, milnet, criterion, args)
logger.info('\r Epoch [%d/%d] train loss: %.4f test loss: %.4f, average score: %.4f, f1 score: %.4f, AUC: ' %
(epoch, args.num_epochs, train_loss_bag, test_loss_bag, avg_score,f1) + '|'.join('class-{}>>{}'.format(*k) for k in enumerate(aucs)))
scheduler.step()
current_score = (sum(aucs) + avg_score)/3
if current_score >= best_score:
best_score = current_score
print(current_score)
save_name = os.path.join(save_path, 'best_model.pth')
torch.save(milnet.state_dict(), save_name)
#torch.save(milnet, save_name)
logger.info('Best model saved at: ' + save_name)
logger.info('Best thresholds ===>>> '+ '|'.join('class-{}>>{}'.format(*k) for k in enumerate(thresholds_optimal)))
# if args.weight_div>0:
# if epoch%10==0:
# print('--------------------Clustering--------------------\n')
# cluster_idx_dict = pre_cluter(trainloader, milnet, criterion, optimizer, args,init= False)
# print('--------------------Clustering finished--------------------\n')
if __name__ == '__main__':
main()