Skip to content

References

Christina Bandaragoda edited this page Mar 13, 2018 · 10 revisions

Abatzoglou J.T. and Brown T.J. (2012) A comparison of statistical downscaling methods suited for wildfire applications " International Journal of Climatology (2012),doi: 10.1002/joc.2312.

Currier, W. R. (2016) An independent evaluation of frozen precipitation from the WRF model and PRISM in the Olympic Mountains for WY 2015 and 2016. Master’s thesis, Department of Civil and Environmental Engineering, University of Washington, 58 pp., https://digital.lib.washington.edu/researchworks/handle/1773/38604.

Currier, W.R., T. Thorson, and J.D. Lundquist (2017) Independent Evaluation of Frozen Precipitation from WRF and PRISM in the Olympic Mountains. J. Hydrometeor., 18,2681–2703, https://doi.org/10.1175/JHM-D-17-0026.1 Supplemental information related to this paper is available at the Journals Online website: https://doi.org/10.1175/JHM-D-17-0026.s1.

Henn, B., A.J. Newman, B. Livneh, C. Daly, J.D. Lundquist (2017) An assessment of differences in gridded precipitation datasets in complex terrain, Journal of Hydrology, Volume 556, 2018, Pages 1205-1219, ISSN 0022-1694, https://doi.org/10.1016/j.jhydrol.2017.03.008.

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E. (2017), Creative computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface dynamics, Earth Surf. Dynam., 5, 21-46, https://doi.org/10.5194/esurf-5-21-2017.

Houska, T., Kraft, P., Chamorro-Chavez, A. and Breuer, L.: SPOTting Model Parameters Using a Ready-Made Python Package, PLoS ONE, 10(12), e0145180, doi:10.1371/journal.pone.0145180, 2015

Jakeman, J.D., J.A. Stephens, L.P. Swiler, D.M. Vigil, and T.M. Wildey (2014) "Dakota, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.0 User’s Manual," Sandia Technical Report SAND2014-4633. Updated November 2015 (Version 6.3).

Kelleher, C., B. Mcglynn, T. Wagener (2017). Characterizing and reducing equifinality by constraining a distributed catchment model with regional signatures, local observations, and process understanding. Hydrology and Earth System Sciences. 21. 3325-3352. 10.5194/hess-21-3325-2017.

Kelleher, C., Wagener, T., and McGlynn, B. (2015). Model-based analysis of the influence of catchment properties on hydrologic partitioning across five mountain headwater subcatchments, Water Resour. Res., 51, 4109–4136, https://doi.org/10.1002/2014WR016147.

Laloy, E., and J. A. Vrugt (2012), High-dimensional posterior exploration of hydrologic models using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 48, W01526, doi:10.1029/2011WR010608.

Livneh, B., Bohn, T., Pierce, D., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D., and L. Brekke (2015), "A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013." Scientific Data 2: 150042.

McRae, G.J., J.W. Tilden and J.H. Seinfeld (1982). Global sensitivity analysis—a computational implementation of the Fourier Amplitude Sensitivity Test (FAST). Computers & Chemical Engineering, 6, 15–25.

Pianosi, F., K. Beven, J. Freer, J.W. Hall, J. Rougier, D.B. Stephenson, T. Wagener (2016) Sensitivity analysis of environmental models: A systematic review with practical workflow, Environmental Modelling & Software, Volume 79, 2016, Pages 214-232, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2016.02.008.

Salathé, E.P., A.F. Hamlet, C.F. Mass, S. Lee, M. Stumbaugh, and R. Steed (2014), Estimates of Twenty-First-Century Flood Risk in the Pacific Northwest Based on Regional Climate Model Simulations. J. Hydrometeor., 15, 1881–1899, https://doi.org/10.1175/JHM-D-13-0137.1

Unsworth, M.H. and J.L. Monteith (1975), Long-wave radiation at the ground, Quart. J.R. Met. Soc, 101, pp. 13-24. Vrugt, J.A. , 2016, Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB Implementation, Environmental Modelling & Software, 75, 273-316, doi:10.1016/j.envsoft.2015.08.013.

Vrugt, J. A., and M. Sadegh (2013), Toward diagnostic model calibration and evaluation: Approximate Bayesian computation, Water Resour. Res., 49, 4335–4345, doi:10.1002/wrcr.20354.

Zheng, F., Maier, H. R., Wu, W., Dandy, G. C., Gupta, H. V., & Zhang, T. (2018). On lack of robustness in hydrological model development due to absence of guidelines for selecting calibration and evaluation data: Demonstration for data-driven models. Water Resources Research, 54. https://doi.org/10.1002/2017WR021470

Clone this wiki locally