-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cosin.py
485 lines (421 loc) · 19.4 KB
/
train_cosin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# 参考 https://github.com/microsoft/DCVC/issues/35
import os
import math
import torch
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import Module
from src.models.DCVC_net_add_noise import DCVC_net
# from src.models.DCVC_net_full_init import DCVC_net
# from src.models.DCVC_net_quant import DCVC_net
# from src.models.DCVC_net_Spynet import DCVC_net
from src.zoo.image import model_architectures as architectures
from test_video import PSNR, ms_ssim, read_frame_to_torch
from dvc_dataset import DataSet, RawDataSet, UVGDataSet
from mmvc_dataset import VimeoDataset
# from datasetVimeo import Vimeo90kDataset
import wandb
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
from utils import load_submodule_params, freeze_submodule, unfreeze_submodule, get_save_folder, clip_gradient
import random
# set CUDA_VISIBLE_DEVICES=
train_dataset_path = '/mnt/data3/zhaojunzhang/vimeo_septuplet/test.txt' # mini_dvc_test_val_1k.txt' #
tag = 'test' if train_dataset_path.__contains__('mini') else 'main'
train_args = {
'project': "DCVC-Trainer_remote",
'describe': f"[25.2.12] [{tag}] 增大lambda对齐官方结果,但多次出现step3 bpp_z降至e-6",
'i_frame_model_name': "cheng2020-anchor",
'i_frame_model_path': ["checkpoints/cheng2020-anchor-3-e49be189.pth.tar",
"checkpoints/cheng2020-anchor-4-98b0b468.pth.tar",
"checkpoints/cheng2020-anchor-5-23852949.pth.tar",
"checkpoints/cheng2020-anchor-6-4c052b1a.pth.tar"],
'i_frame_model_index': 0,
'dcvc_model_path': "checkpoints/model_dcvc_quality_0_psnr.pth",
'test_dataset_config': "dataset_config.json",
'worker': 12,
'cuda': True,
'cuda_device': 3,
'model_type': "psnr",
'resume': False,
"batch_size": 4,
"metric": "MSE", # 最小化 MSE 来最大化 PSNR
"quality": 3, # in [3、4、5、6]
"lambda": 292,
"gop": 10,
"epochs": 30,
"seed": 192,
"border_of_steps": [1, 4, 8, 14, 20], # [1, 4, 7, 10, 16],
"lr_set": {
"me1": 1e-4,
"me2": 1e-4,
"reconstruction": 1e-4,
"contextual_coding": 1e-4,
# "contextual_coding2": 1e-4,
"all": 1e-4,
"fine_tuning": 1e-5
},
"warmup_border": None,
"decay_border": None,
"decay_rate": None,
"train_dataset_path": train_dataset_path,
"loss_settings": {
"me1": {
"D-item": "x_tilde_dist",
"R-item": []
},
"me2": {
"D-item": "x_tilde_dist",
"R-item": ["mv_latent_rate", "mv_prior_rate"]
},
"reconstruction": {
"D-item": "x_hat_dist",
"R-item": []
},
# "contextual_coding1": {
# "D-item": "x_hat_dist",
# "R-item": ["frame_latent_rate"]
# },
"contextual_coding": {
"D-item": "x_hat_dist",
"R-item": ["frame_latent_rate", "frame_prior_rate"]
},
"all": {
"D-item": "x_hat_dist",
"R-item": ["mv_latent_rate", "mv_prior_rate", "frame_latent_rate", "frame_prior_rate"]
},
"fine_tuning": {
"D-item": "x_hat_dist",
"R-item": ["mv_latent_rate", "mv_prior_rate", "frame_latent_rate", "frame_prior_rate"]
}
}
}
# 1.mv warmup; 2.train excluding mv; 3.train excluding mv with bit cost; 4.train all
borders_of_steps = train_args["border_of_steps"]
lr_set = train_args["lr_set"]
if train_args["decay_border"] is not None:
decay_interval = train_args["epochs"] - train_args["decay_border"]
# 此处 index 对应文中 quality index,lambda来自于文中3.4及附录
# lambda_set = {
# "MSE": { # 对应psnr
# 3: 256,
# 4: 512,
# 5: 1024,
# 6: 2048
# },
# "MS-SSIM": {
# 3: 8,
# 4: 16,
# 5: 32,
# 6: 64
# }
# }
class Trainer(Module):
def __init__(self, args):
super().__init__()
# 加载 cheng2020-anchor 模型
i_frame_load_checkpoint = torch.load(
# args['i_frame_model_path'][args['i_frame_model_index']],
"checkpoints/cheng2020-anchor-3-e49be189.pth.tar",
map_location=torch.device('cpu')
)
self.i_frame_net = architectures[args['i_frame_model_name']].from_state_dict(i_frame_load_checkpoint)
for param in self.i_frame_net.parameters():
param.requires_grad = False
# 加载 DCVC 模型
self.video_net = DCVC_net()
if args['resume']:
load_checkpoint = torch.load(args['dcvc_model_path'], map_location=torch.device('cpu'))
self.video_net.load_dict(load_checkpoint)
else:
# 加载光流网络
# load_submodule_params(self.video_net.opticFlow, "checkpoints/model_dcvc_quality_0_psnr.pth", 'opticFlow')
pass
self.freeze_list = [self.video_net.opticFlow,
self.video_net.mvEncoder,
self.video_net.mvpriorEncoder,
self.video_net.mvpriorDecoder,
self.video_net.auto_regressive_mv,
self.video_net.entropy_parameters_mv,
self.video_net.mvDecoder_part1,
self.video_net.mvDecoder_part2,
self.video_net.bitEstimator_z_mv
]
self.load_list = [
(self.video_net.mvEncoder, "mvEncoder"),
(self.video_net.mvpriorEncoder, "mvpriorEncoder"),
(self.video_net.mvpriorDecoder, "mvpriorDecoder"),
(self.video_net.auto_regressive_mv, "auto_regressive_mv"),
(self.video_net.entropy_parameters_mv, "entropy_parameters_mv"),
(self.video_net.mvDecoder_part1, "mvDecoder_part1"),
(self.video_net.mvDecoder_part2, "mvDecoder_part2"),
(self.video_net.bitEstimator_z_mv, "bitEstimator_z_mv")
]
# 加载到 gpu
self.device = torch.device('cuda', args['cuda_device']) if args['cuda'] else torch.device('cpu')
self.i_frame_net.to(self.device)
self.i_frame_net.eval()
self.video_net.to(self.device)
# 优化器
self.lr = lr_set
self.optimizer = optim.AdamW(self.video_net.parameters(), lr=1e-4)
# 超参数
self.metric = args['metric']
self.quality_index = args['quality']
self.gop = args['gop']
# 初始化
self.current_epoch = 0
self.step = -1
self.step_name = None
self.loss_items = None
def schedule(self):
update = False
if self.current_epoch == 0:
self.step = 1
self.step_name = 'me1'
update = True
# freeze_submodule([self.video_net.opticFlow])
elif self.current_epoch == borders_of_steps[0]:
self.step = 1
self.step_name = "me2"
update = True
elif self.current_epoch == borders_of_steps[1]:
self.step = 2
self.step_name = "reconstruction"
update = True
freeze_submodule(self.freeze_list)
elif self.current_epoch == borders_of_steps[2]:
self.step = 3
self.step_name = "contextual_coding"
update = True
# elif self.current_epoch == borders_of_steps[3]:
# self.step = 3
# self.step_name = "contextual_coding2"
elif self.current_epoch == borders_of_steps[3]:
self.step = 4
self.step_name = "all"
update = True
unfreeze_submodule(self.freeze_list)
elif self.current_epoch == borders_of_steps[4]:
self.step = 5
self.step_name = "fine_tuning"
update = True
# 学习率调整
base_lr = self.lr[self.step_name]
current_lr = base_lr
# if self.current_epoch < train_args["warmup_border"]:
# current_lr = base_lr * (self.current_epoch + 1) / train_args["warmup_border"]
# elif self.step_name.startswith('reconstruction') and self.current_epoch - borders_of_steps[1] < 4:
# current_lr = base_lr * (self.current_epoch - borders_of_steps[1] + 1) / 4
# elif self.step_name.startswith('contextual_coding') and self.current_epoch - borders_of_steps[3] < 4:
# current_lr = base_lr * (self.current_epoch - borders_of_steps[3] + 1) / 4
# elif self.current_epoch >= train_args["decay_border"]:
# current_lr = base_lr * train_args["decay_rate"] ** (self.current_epoch // decay_interval)
if update:
self.optimizer = optim.AdamW(filter(lambda p : p.requires_grad, self.video_net.parameters()), lr=current_lr)
if self.step_name == "contextual_coding":
if update:
# iters = len(dataloader) * (borders_of_steps[3] - borders_of_steps[2]) / 2
iters = (borders_of_steps[3] - borders_of_steps[2]) / 2
print(f"init scheduler: {self.step_name}, iters = {borders_of_steps[3]} - {borders_of_steps[2]} / 2")
self.scheduler = optim.lr_scheduler.CosineAnnealingLR(self.optimizer, T_max=iters, eta_min=0)
else:
pass
else:
self.scheduler = None
self.loss_items = train_args["loss_settings"][self.step_name]
print(f"step: {self.step}, step_name: {self.step_name}, update: {update}, current_lr: {current_lr}")
print(f"loss_items: {self.loss_items}")
"""
loss components:
x_tilde_dist / x_hat_dist: D,
mv_latent_rate: R(gt),
mv_prior_rate: R(st),
frame_latent_rate: R(yt),
frame_prior_rate: R(zt)
"""
loss_setting2output_obj = { # 最小化bpp来最大化压缩率
"mv_latent_rate": "bpp_mv_y",
"mv_prior_rate": "bpp_mv_z",
"frame_latent_rate": "bpp_y",
"frame_prior_rate": "bpp_z"
}
def loss(self, net_output, target):
# 失真
# warmup 时需要只获取运动补偿输出
if self.loss_items["D-item"] == "x_tilde_dist":
D_item = F.mse_loss(net_output["x_tilde"], target)
else:
D_item = F.mse_loss(net_output["recon_image"], target)
# 率
R_item = 0
for item in self.loss_items["R-item"]:
R_item += net_output[self.loss_setting2output_obj[item]]
# print("lambda", lambda_set[self.metric][self.quality_index])
# print("D_item", D_item)
# print("R_item", R_item)
# print("bpp_mv_y", net_output["bpp_mv_y"])
# print("bpp_mv_z", net_output["bpp_mv_z"])
# print("bpp_y", net_output["bpp_y"])
# print("bpp_z", net_output["bpp_z"])
# loss = lambda_set[self.metric][self.quality_index] * D_item + R_item
loss = train_args["lambda"] * D_item + R_item
return loss
def training_step(self, batch, batch_idx):
self.video_net.train()
# input_image, ref_image = batch
input_image, ref_image, quant_noise_feature, quant_noise_z, quant_noise_mv, quant_noise_z_mv = (x.to(self.device) for x in batch)
ref_image = ref_image.to(self.device)
input_image = input_image.to(self.device)
# 和推理时一样将参考帧压缩
with torch.no_grad():
output_i = self.i_frame_net(ref_image)
ref_image = output_i['x_hat']
output_p = self.video_net.forward(
referframe=ref_image, input_image=input_image,
# quant_noise_feature=quant_noise_feature, quant_noise_z=quant_noise_z,
# quant_noise_mv=quant_noise_mv, quant_noise_z_mv=quant_noise_z_mv
)
loss = self.loss(output_p, input_image)
self.optimizer.zero_grad()
loss.backward()
# TODO https://github.com/DeepMC-DCVC/DCVC/issues/8 必要吗?
clip_gradient(self.optimizer, 0.5)
self.optimizer.step()
# if self.step > 1:
if train_args['model_type'] == 'psnr':
quality = PSNR(output_p['recon_image'], input_image)
else:
quality = ms_ssim(output_p['recon_image'], input_image, data_range=1.0).item()
return loss, quality, output_p["bpp_mv_y"], output_p["bpp_mv_z"], output_p["bpp_y"], output_p["bpp_z"], output_p["bpp"]
def validation_step(self, batch, img_idx, output_folder):
self.video_net.eval()
input_image, ref_image = batch
ref_image = ref_image.to(self.device)
input_image = input_image.to(self.device)
output_i = self.i_frame_net(ref_image)
ref_image = output_i['x_hat']
with torch.no_grad():
output = self.video_net.forward(referframe=ref_image, input_image=input_image)
loss = self.loss(output, input_image)
# 可视化
if img_idx < 15:
self.visualization(self.current_epoch, ref_image, input_image, output, img_idx, output_folder)
if train_args['model_type'] == 'psnr':
quality = PSNR(output['recon_image'], input_image)
else:
quality = ms_ssim(output['recon_image'], input_image, data_range=1.0).item()
return loss, quality, output["bpp_mv_y"], output["bpp_mv_z"], output["bpp_y"], output["bpp_z"], output["bpp"]
def visualization(self, epoch, net_ref_image, net_input_image, net_output, img_idx, output_folder):
# 为每个权重创建一个与权重文件名相同的文件夹
vis_folder = os.path.join(output_folder, f"model_epoch_{epoch}_visuals")
if not os.path.exists(vis_folder):
os.makedirs(vis_folder, exist_ok=True)
# 转换图像为可显示格式
ref_image_np = net_ref_image[0].cpu().permute(1, 2, 0).numpy() # [C, H, W] -> [H, W, C]
input_image_np = net_input_image[0].cpu().permute(1, 2, 0).numpy()
warped_image_np = net_output['x_tilde'][0].cpu().permute(1, 2, 0).numpy()
output_image_np = net_output['recon_image'][0].cpu().permute(1, 2, 0).numpy()
# 反归一化
ref_image_np = (ref_image_np * 255).astype(np.uint8)
input_image_np = (input_image_np * 255).astype(np.uint8)
warped_image_np = (warped_image_np * 255).astype(np.uint8)
output_image_np = (output_image_np * 255).astype(np.uint8)
# 创建图像对比图
fig, ax = plt.subplots(1, 4, figsize=(20, 5))
ax[0].imshow(ref_image_np)
ax[0].set_title('Reference Image')
ax[0].axis('off')
ax[1].imshow(input_image_np)
ax[1].set_title('Input Image')
ax[1].axis('off')
ax[2].imshow(warped_image_np)
ax[2].set_title('Warped Image')
ax[2].axis('off')
ax[3].imshow(output_image_np)
ax[3].set_title('Reconstructed Image')
ax[3].axis('off')
# 保存图片到新建的与权重同名的文件夹
img_save_path = os.path.join(vis_folder, f'validation_{epoch}_{img_idx}.png')
plt.savefig(img_save_path)
plt.close(fig)
if __name__ == "__main__":
wandb.init(project=train_args["project"])
wandb.config.update(train_args)
if train_args["seed"] is not None:
torch.manual_seed(train_args["seed"])
random.seed(train_args["seed"])
save_folder = get_save_folder()
print("save_folder", save_folder)
trainer = Trainer(train_args)
# dataset = VimeoDataset(video_dir=video_dir, text_split=train_args["train_dataset"])
# dataset = Vimeo90kDataset(data_file=train_args["train_dataset"])
dataset = DataSet(train_dataset_path)
# val_dataset = RawDataSet(val_dataset_path)
# 使用UVG
val_dataset = UVGDataSet(testfull=True)
# val_dataset = VimeoDataset(video_dir=video_dir, text_split=train_args["test_dataset"], test=True)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=train_args['batch_size'], shuffle=True, num_workers=train_args['worker'])
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=train_args['worker'])
for epoch in range(train_args['epochs']):
# 训练
trainer.current_epoch = epoch
with torch.no_grad():
trainer.schedule()
print(f"Epoch {epoch}, {trainer.step_name}, lr: {trainer.optimizer.param_groups[0]['lr']}")
# cnt = 0
# t_losses = 0
# t_qualities = 0
# t_bpps = 0
for batch_idx, batch in enumerate(dataloader):
loss, quality, bpp_mv_y, bpp_mv_z, bpp_y, bpp_z, bpp = trainer.training_step(batch, batch_idx)
# cnt += 1
# t_losses += loss
# t_qualities += quality
# t_bpps += bpp
wandb.log({"epoch": epoch, "batch": batch_idx})
wandb.log({"loss": loss, "quality": quality, "bpp": bpp})
wandb.log({"bpp_mv_y": bpp_mv_y, "bpp_mv_z": bpp_mv_z, "bpp_y": bpp_y, "bpp_z": bpp_z})
group = "step" + str(trainer.step)
wandb.log({f"{group}_epoch": epoch, f"{group}_batch": batch_idx})
wandb.log({f"{group}_loss": loss, f"{group}_quality": quality, f"{group}_bpp": bpp})
wandb.log({f"{group}_bpp_mv_y": bpp_mv_y, f"{group}_bpp_mv_z": bpp_mv_z, f"{group}_bpp_y": bpp_y, f"{group}_bpp_z": bpp_z})
# print(f"Epoch {epoch} {trainer.step_name}, batch {batch_idx}, loss: {t_losses / cnt}, quality({train_args['model_type']}): {t_qualities / cnt}, bpp: {t_bpps / cnt}")
# save model
torch.save(trainer.video_net.state_dict(), os.path.join(save_folder, f"model_epoch_{epoch}.pth"))
if trainer.scheduler is not None:
trainer.scheduler.step()
# 验证
idx = 0
losses = []
qualities = []
bpp_mv_ys = []
bpp_mv_zs = []
bpp_ys = []
bpp_zs = []
bpps = []
for batch_idx, (input_image, ref_image) in enumerate(val_dataloader):
loss, quality, bpp_mv_y, bpp_mv_z, bpp_y, bpp_z, bpp = trainer.validation_step((input_image, ref_image), idx, save_folder)
idx += 1
losses.append(loss)
qualities.append(quality)
bpp_mv_ys.append(bpp_mv_y)
bpp_mv_zs.append(bpp_mv_z)
bpp_ys.append(bpp_y)
bpp_zs.append(bpp_z)
bpps.append(bpp)
ave_loss = sum(losses) / len(losses)
ave_quality = sum(qualities) / len(qualities)
ave_bpp_mv_y = sum(bpp_mv_ys) / len(bpp_mv_ys)
ave_bpp_mv_z = sum(bpp_mv_zs) / len(bpp_mv_zs)
ave_bpp_y = sum(bpp_ys) / len(bpp_ys)
ave_bpp_z = sum(bpp_zs) / len(bpp_zs)
ave_bpp = sum(bpps) / len(bpps)
wandb.log({"epoch": epoch, "val_loss": ave_loss, "val_quality": ave_quality, "val_bpp": ave_bpp})
wandb.log({"val_bpp_mv_y": ave_bpp_mv_y, "val_bpp_mv_z": ave_bpp_mv_z, "val_bpp_y": ave_bpp_y, "val_bpp_z": ave_bpp_z})
print(f"Validation, epoch {epoch}, loss: {ave_loss}, quality({train_args['model_type']}): {ave_quality}, bpp: {ave_bpp}")
print(f"bpp_mv_y: {ave_bpp_mv_y}, bpp_mv_z: {ave_bpp_mv_z}, bpp_y: {ave_bpp_y}, bpp_z: {ave_bpp_z}")
group = "step" + str(trainer.step)
wandb.log({"epoch": epoch, f"{group}_val_loss": ave_loss, f"{group}_val_quality": ave_quality, f"{group}_val_bpp": ave_bpp})
wandb.log({f"{group}_val_bpp_mv_y": ave_bpp_mv_y, f"{group}_val_bpp_mv_z": ave_bpp_mv_z, f"{group}_val_bpp_y": ave_bpp_y, f"{group}_val_bpp_z": ave_bpp_z})