-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path17025135_Jischeng.Liu_cw2.uclcg
804 lines (656 loc) · 28 KB
/
17025135_Jischeng.Liu_cw2.uclcg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
function setup()
{
UI = {};
UI.tabs = [];
UI.titleLong = 'Rasterization Demo';
UI.titleShort = 'rasterizationDemo';
UI.numFrames = 1000;
UI.maxFPS = 24;
UI.renderWidth = 800;
UI.renderHeight = 400;
UI.tabs.push(
{
visible: true,
type: `x-shader/x-fragment`,
title: `Rasterization`,
id: `RasterizationDemoFS`,
initialValue: `#define PROJECTION
#define RASTERIZATION
#define CLIPPING
#define INTERPOLATION
#define ZBUFFERING
#define ANIMATION
precision highp float;
uniform float time;
// Polygon / vertex functionality
const int MAX_VERTEX_COUNT = 8;
uniform ivec2 viewport;
struct Vertex {
vec3 position;
vec3 color;
};
struct Polygon {
// Numbers of vertices, i.e., points in the polygon
int vertexCount;
// The vertices themselves
Vertex vertices[MAX_VERTEX_COUNT];
};
// Appends a vertex to a polygon
void appendVertexToPolygon(inout Polygon polygon, Vertex element) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i == polygon.vertexCount) {
polygon.vertices[i] = element;
}
}
polygon.vertexCount++;
}
// Copy Polygon source to Polygon destination
void copyPolygon(inout Polygon destination, Polygon source) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
destination.vertices[i] = source.vertices[i];
}
destination.vertexCount = source.vertexCount;
}
// Get the i-th vertex from a polygon, but when asking for the one behind the last, get the first again
Vertex getWrappedPolygonVertex(Polygon polygon, int index) {
if (index >= polygon.vertexCount) index -= polygon.vertexCount;
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i == index) return polygon.vertices[i];
}
}
// Creates an empty polygon
void makeEmptyPolygon(out Polygon polygon) {
polygon.vertexCount = 0;
}
// Clipping part
#define ENTERING 0
#define LEAVING 1
#define OUTSIDE 2
#define INSIDE 3
// function to judge cross type of two lines that defined by two pairs of vertecies
int getCrossType(Vertex poli1, Vertex poli2, Vertex wind1, Vertex wind2) {
#ifdef CLIPPING
// judge whether two vertices are inside or outside the edge
float type1 = (poli1.position.x - wind1.position.x) * (wind2.position.y - wind1.position.y) - (poli1.position.y - wind1.position.y) * (wind2.position.x - wind1.position.x);
float type2 = (poli2.position.x - wind1.position.x) * (wind2.position.y - wind1.position.y) - (poli2.position.y - wind1.position.y) * (wind2.position.x - wind1.position.x);
if (type1 >= 0.0){
if(type2 >= 0.0){
return INSIDE; // two verteces are both inside the edge
}else{
return LEAVING; // the 1st vertex inside and the 2nd vertex outside the edge, so their line is leaving
}
}else{
if(type2 >= 0.0){
return ENTERING; // the 1st vertex outside and the 2nd vertex inside the edge, so their line is entering
}else{
return OUTSIDE; // both two vertiecs are outside the edge
}
}
#else
return INSIDE;
#endif
}
// This function assumes that the segments are not parallel or collinear.
// Assume a and b on the same line, while c and d on the same line
Vertex intersect2D(Vertex a, Vertex b, Vertex c, Vertex d) {
#ifdef CLIPPING
// compute x and y coordinates of intersection point
float numX= (a.position.x * b.position.y - a.position.y * b.position.x) * (c.position.x - d.position.x) - (a.position.x - b.position.x) * (c.position.x * d.position.y - c.position.y * d.position.x);
float numY= (a.position.x * b.position.y - a.position.y * b.position.x) * (c.position.y - d.position.y) - (a.position.y - b.position.y) * (c.position.x * d.position.y - c.position.y * d.position.x);
float den= (a.position.x - b.position.x) * (c.position.y - d.position.y) - (a.position.y - b.position.y) * (c.position.x - d.position.x);
// using (x-a.position.x)/(b.position.x-a.position.x)=(z-a.position.z)/(b.position.z-a.position.z) to get z
float numZ = a.position.z + (b.position.z - a.position.z) * (numX/den - a.position.x) / (b.position.x - a.position.x);
return Vertex(vec3(numX/den, numY/den, numZ), vec3(1.0));
#else
return a;
#endif
}
void sutherlandHodgmanClip(Polygon unclipped, Polygon clipWindow, out Polygon result) {
Polygon clipped;
copyPolygon(clipped, unclipped);
// Loop over the clip window
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i >= clipWindow.vertexCount) break;
// Make a temporary copy of the current clipped polygon
Polygon oldClipped;
copyPolygon(oldClipped, clipped);
copyPolygon(result, clipped);
// Set the clipped polygon to be empty
makeEmptyPolygon(clipped);
// Loop over the current clipped polygon
for (int j = 0; j < MAX_VERTEX_COUNT; ++j) {
if (j >= oldClipped.vertexCount) break;
// Handle the j-th vertex of the clipped polygon. This should make use of the function
// intersect() to be implemented above.
#ifdef CLIPPING
// edge, which determined by vertex poli1 and poli2 of polygon, to be checked
Vertex poli1 = getWrappedPolygonVertex(oldClipped,j);
Vertex poli2 = getWrappedPolygonVertex(oldClipped,j+1);
// window edge that determined by vertex wind1 and wind2
Vertex wind1 = getWrappedPolygonVertex(clipWindow,i);
Vertex wind2 = getWrappedPolygonVertex(clipWindow,i+1);
// get cross type by calling getCrossType()
int crossType = getCrossType(poli1, poli2, wind1, wind2);
if(crossType == INSIDE){ // INSIDE: add the current vertex
appendVertexToPolygon(clipped, poli1);
}else if(crossType == ENTERING){ // ENTERING: add the intersection point
Vertex intersectionP=intersect2D(poli1, poli2, wind1, wind2);
appendVertexToPolygon(clipped, intersectionP);
}else if(crossType == LEAVING){ // LEAVING: add the current vertex and intersection point
Vertex intersectionP=intersect2D(poli1, poli2, wind1, wind2);
appendVertexToPolygon(clipped, poli1);
appendVertexToPolygon(clipped, intersectionP);
}
// OUTSIDE: do nothing
#else
appendVertexToPolygon(clipped, getWrappedPolygonVertex(oldClipped, j));
#endif
}
}
// Copy the last version to the output
copyPolygon(result, clipped);
}
// Rasterization and culling part
#define INNER_SIDE 0
#define OUTER_SIDE 1
// Assuming a clockwise (vertex-wise) polygon, returns whether the input point
// is on the inner or outer side of the edge (ab)
int edge(vec2 point, Vertex a, Vertex b) {
// For clockwise polygon, if the point on the right side of edge, the point is inner the edge
#ifdef RASTERIZATION
float l = (point.x - a.position.x) * (b.position.y - a.position.y) - (point.y - a.position.y) * (b.position.x - a.position.x);
if (l >= 0.0){ // if l > 0, the point on the right side (inner side) of the edge (if l==0, the point on the edge)
return INNER_SIDE;
}else { // if l < 0, the point on the left side (outter side) of the edge
return OUTER_SIDE;
}
#endif
return OUTER_SIDE;
}
// Returns if a point is inside a polygon or not
bool isPointInPolygon(vec2 point, Polygon polygon) {
// Don't evaluate empty polygons
if (polygon.vertexCount == 0) return false;
// Check against each edge of the polygon
bool rasterise = true;
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
#ifdef RASTERIZATION
// determine if the point is inside or outside the edge that determined by current vertex and next vertex of the polygon
// if the point on the inner side of the edge, return true; otherwise, return false
Vertex poli1 = getWrappedPolygonVertex(polygon, i);
Vertex poli2 = getWrappedPolygonVertex(polygon, i+1);
if(edge(point, poli1, poli2) == OUTER_SIDE){
return rasterise = false;
}
#else
rasterise = false;
#endif
}
}
return rasterise;
}
bool isPointOnPolygonVertex(vec2 point, Polygon polygon) {
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
ivec2 pixelDifference = ivec2(abs(polygon.vertices[i].position.xy - point) * vec2(viewport));
int pointSize = viewport.x / 200;
if( pixelDifference.x <= pointSize && pixelDifference.y <= pointSize) {
return true;
}
}
}
return false;
}
float triangleArea(vec2 a, vec2 b, vec2 c) {
// https://en.wikipedia.org/wiki/Heron%27s_formula
float ab = length(a - b);
float bc = length(b - c);
float ca = length(c - a);
float s = (ab + bc + ca) / 2.0;
return sqrt(max(0.0, s * (s - ab) * (s - bc) * (s - ca)));
}
Vertex interpolateVertex(vec2 point, Polygon polygon) {
float weightSum = 0.0;
vec3 colorSum = vec3(0.0);
vec3 positionSum = vec3(0.0);
float depthSum = 0.0;
bool depthSumCheck = false; // declare a boolean to check if the depthSum equals zero (i.e.if z-buffer is calculated)
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
#if defined(INTERPOLATION) || defined(ZBUFFERING)
// compute sum of weights, i.e. total area of the polygon
Vertex poli1 = getWrappedPolygonVertex(polygon, i);
Vertex poli2 = getWrappedPolygonVertex(polygon, i+1);
Vertex poli3 = getWrappedPolygonVertex(polygon, i+2);
weightSum = triangleArea(vec2(poli1.position.x, poli1.position.y), vec2(poli2.position.x, poli2.position.y), vec2(poli3.position.x, poli3.position.y));
// compute weight for each vertex, i.e. (area of corresponded triangular)/(total area of the polygon)
float area = triangleArea(vec2(poli2.position.x,poli2.position.y), vec2(poli3.position.x,poli3.position.y), point);
float weight = area/weightSum;
#else
#endif
#ifdef ZBUFFERING
// compute depth (i.e. z coordinate) of the point by using 1/z
depthSum = depthSum + 1.0/poli1.position.z * weight;
depthSumCheck = true; // if the depthSum does not equal zero, set boolean as true
#endif
#ifdef INTERPOLATION
// interpolate color of the point
if(depthSumCheck) { // if the depthSum does not equal zero, calculate colorSum based on 1/depth
colorSum = colorSum + (poli1.color/poli1.position.z) * weight;
}else{ // if the depthSum equal zero, 1/depth will be infinite
colorSum = colorSum + poli1.color * weight; // so calculate colorSum = weight0 * color0 + weight1 * color1 + weight2 * color2
}
#endif
}
}
Vertex result = polygon.vertices[0];
#ifdef INTERPOLATION
if(depthSumCheck) { // if the depthSum does not equal zero, calculate colorSum based on 1/depth
result.color = colorSum / depthSum; //assign color to vertex result: c = z [weight0 * (c0/z0) + weight1 * (c1/z1) + weight2 * (c2/z2)]
}else {
result.color = colorSum;
}
#endif
#ifdef ZBUFFERING
// assign depth (z coordinate) to vertex result: 1/z = weight0 * (1/z0) + weight1 * (1/z1) + weight2 * (1/z2)
result.position.z = 1.0 / depthSum;
#endif
#if !defined(INTERPOLATION) && !defined(ZBUFFERING)
// assign default color and depth to vertex result
#endif
return result;
}
// Projection part
// Used to generate a projection matrix. convert into image space
mat4 computeProjectionMatrix() {
mat4 projectionMatrix = mat4(1);
float aspect = float(viewport.x) / float(viewport.y);
float imageDistance = 0.5;
#ifdef PROJECTION
projectionMatrix[0] = vec4(1.0, 0.0, 0.0, 0.0);
projectionMatrix[1] = vec4(0.0, aspect, 0.0, 0.0); // change coordinates in y axis
projectionMatrix[2] = vec4(0.0, 0.0, 1.0, imageDistance); // change coordinates in depth
projectionMatrix[3] = vec4(0.0, 0.0, 0.0, 1.0);
#endif
return projectionMatrix;
}
// Used to generate a simple "look-at" camera. convert to the 3-D camera space
// VRP: view reference point
// TP: target point
// VUV: view up vector
// VPN: TP-VRP view plane normal (where the camera point)
mat4 computeViewMatrix(vec3 VRP, vec3 TP, vec3 VUV) {
mat4 viewMatrix = mat4(1);
#ifdef PROJECTION
vec3 VPN = TP - VRP; // VPN: view plane normal
// find the basis vectors
// n, u and v are unite vectors and are all orthogonal to each other
vec3 n = normalize(VPN);
vec3 u = normalize(cross(VUV, n));
vec3 v = normalize(cross(n, u));
viewMatrix[0] = vec4(u[0], v[0], n[0], 0); //
viewMatrix[1] = vec4(u[1], v[1], n[1], 0); //
viewMatrix[2] = vec4(u[2], v[2], n[2], 0); // rotation
viewMatrix[3] = vec4(- dot(VRP, u), - dot(VRP, v), - dot(VRP, n), 1); // translation
#endif
return viewMatrix;
}
vec3 getCameraPosition() {
#ifdef ANIMATION
// convert camera position by using a time variable
return vec3(10.0*vec3(sin(time), 0.0, cos(time)));
// the back-facing primitives are not drawn because they are culled. (last frame)
// in this case the polygon is assumed to be clockwise (vertex-wise).
// so when the camera ray shot at back-facing primitives of the polygon, they are counter-clockwise after projection so they are culled (i.e.not rendered)
#else
return vec3(0, 0, 10); // static position
#endif
}
// Takes a single input vertex and projects it using the input view and projection matrices
vec3 projectVertexPosition(vec3 position) {
// Set the parameters for the look-at camera.
vec3 TP = vec3(0, 0, 0);
vec3 VRP = getCameraPosition();
vec3 VUV = vec3(0, 1, 0);
// Compute the view matrix.
mat4 viewMatrix = computeViewMatrix(VRP, TP, VUV);
// Compute the projection matrix.
mat4 projectionMatrix = computeProjectionMatrix();
#ifdef PROJECTION
vec4 pos = projectionMatrix * viewMatrix * vec4(position, 1.0); // change demension of position from three to four to be applied
// apply view matrix and projection matrix to given position
position = vec3(pos.x/pos.w, pos.y/pos.w, pos.z/pos.w); // get the correct three dimensional matrix by deviding forth coordinate
// the transform is (x, y, z, w)=(x/w, y/w, z/w)
return position;
#else
return position;
#endif
}
// Projects all the vertices of a polygon
void projectPolygon(inout Polygon projectedPolygon, Polygon polygon) {
copyPolygon(projectedPolygon, polygon);
for (int i = 0; i < MAX_VERTEX_COUNT; ++i) {
if (i < polygon.vertexCount) {
projectedPolygon.vertices[i].position = projectVertexPosition(polygon.vertices[i].position);
}
}
}
// Draws a polygon by projecting, clipping, ratserizing and interpolating it
void drawPolygon(
vec2 point,
Polygon clipWindow,
Polygon oldPolygon,
inout vec3 color,
inout float depth)
{
Polygon projectedPolygon;
projectPolygon(projectedPolygon, oldPolygon);
Polygon clippedPolygon;
sutherlandHodgmanClip(projectedPolygon, clipWindow, clippedPolygon);
if (isPointInPolygon(point, clippedPolygon)) {
Vertex interpolatedVertex =
interpolateVertex(point, projectedPolygon);
#if defined(ZBUFFERING)
// Put your code here
// Compare depth (i.e. z coordinate) of interpolatedVertex with input depth
// if depth of interpolatedVertex is smaller than input depth, change depth to that of interpolatedVertex
if(interpolatedVertex.position.z < depth){
color = interpolatedVertex.color;
depth = interpolatedVertex.position.z;
}
#else
// Put your code to handle z buffering here
color = interpolatedVertex.color;
depth = interpolatedVertex.position.z;
#endif
}
if (isPointOnPolygonVertex(point, clippedPolygon)) {
color = vec3(1);
}
}
// Main function calls
void drawScene(vec2 pixelCoord, inout vec3 color) {
color = vec3(0.3, 0.3, 0.3);
// Convert from GL pixel coordinates 0..N-1 to our screen coordinates -1..1
vec2 point = 2.0 * pixelCoord / vec2(viewport) - vec2(1.0);
Polygon clipWindow;
clipWindow.vertices[0].position = vec3(-0.65, 0.95, 1.0);
clipWindow.vertices[1].position = vec3( 0.65, 0.75, 1.0);
clipWindow.vertices[2].position = vec3( 0.75, -0.65, 1.0);
clipWindow.vertices[3].position = vec3(-0.75, -0.85, 1.0);
clipWindow.vertexCount = 4;
// Draw the area outside the clip region to be dark
color = isPointInPolygon(point, clipWindow) ? vec3(0.5) : color;
const int triangleCount = 2;
Polygon triangles[triangleCount];
triangles[0].vertices[0].position = vec3(-2, -2, 0.0);
triangles[0].vertices[1].position = vec3(4, 0, 3.0);
triangles[0].vertices[2].position = vec3(-1, 2, 0.0);
triangles[0].vertices[0].color = vec3(1.0, 0.5, 0.2);
triangles[0].vertices[1].color = vec3(0.8, 0.8, 0.8);
triangles[0].vertices[2].color = vec3(0.2, 0.5, 1.0);
triangles[0].vertexCount = 3;
triangles[1].vertices[0].position = vec3(3.0, 2.0, -2.0);
triangles[1].vertices[2].position = vec3(0.0, -2.0, 3.0);
triangles[1].vertices[1].position = vec3(-1.0, 2.0, 4.0);
triangles[1].vertices[1].color = vec3(0.2, 1.0, 0.1);
triangles[1].vertices[2].color = vec3(1.0, 1.0, 1.0);
triangles[1].vertices[0].color = vec3(0.1, 0.2, 1.0);
triangles[1].vertexCount = 3;
float depth = 10000.0;
// Project and draw all the triangles
for (int i = 0; i < triangleCount; i++) {
drawPolygon(point, clipWindow, triangles[i], color, depth);
}
}
void main() {
drawScene(gl_FragCoord.xy, gl_FragColor.rgb);
gl_FragColor.a = 1.0;
}`,
description: ``,
wrapFunctionStart: ``,
wrapFunctionEnd: ``
});
UI.tabs.push(
{
visible: false,
type: `x-shader/x-vertex`,
title: `RasterizationDemoTextureVS - GL`,
id: `RasterizationDemoTextureVS`,
initialValue: `attribute vec3 position;
attribute vec2 textureCoord;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
varying highp vec2 vTextureCoord;
void main(void) {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
vTextureCoord = textureCoord;
}
`,
description: ``,
wrapFunctionStart: ``,
wrapFunctionEnd: ``
});
UI.tabs.push(
{
visible: false,
type: `x-shader/x-vertex`,
title: `RasterizationDemoVS - GL`,
id: `RasterizationDemoVS`,
initialValue: `attribute vec3 position;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
void main(void) {
gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);
}
`,
description: ``,
wrapFunctionStart: ``,
wrapFunctionEnd: ``
});
UI.tabs.push(
{
visible: false,
type: `x-shader/x-fragment`,
title: `RasterizationDemoTextureFS - GL`,
id: `RasterizationDemoTextureFS`,
initialValue: `
varying highp vec2 vTextureCoord;
uniform sampler2D uSampler;
void main(void) {
gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.s, vTextureCoord.t));
}
`,
description: ``,
wrapFunctionStart: ``,
wrapFunctionEnd: ``
});
return UI;
}//!setup
var gl;
function initGL(canvas) {
try {
gl = canvas.getContext("webgl");
gl.viewportWidth = canvas.width;
gl.viewportHeight = canvas.height;
} catch (e) {
}
if (!gl) {
alert("Could not initialise WebGL, sorry :-(");
}
}
function evalJS(id) {
var jsScript = document.getElementById(id);
eval(jsScript.innerHTML);
}
function getShader(gl, id) {
var shaderScript = document.getElementById(id);
if (!shaderScript) {
return null;
}
var str = "";
var k = shaderScript.firstChild;
while (k) {
if (k.nodeType == 3) {
str += k.textContent;
}
k = k.nextSibling;
}
var shader;
if (shaderScript.type == "x-shader/x-fragment") {
shader = gl.createShader(gl.FRAGMENT_SHADER);
} else if (shaderScript.type == "x-shader/x-vertex") {
shader = gl.createShader(gl.VERTEX_SHADER);
} else {
return null;
}
gl.shaderSource(shader, str);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert(gl.getShaderInfoLog(shader));
return null;
}
return shader;
}
function RasterizationDemo() {
}
RasterizationDemo.prototype.initShaders = function() {
this.shaderProgram = gl.createProgram();
gl.attachShader(this.shaderProgram, getShader(gl, "RasterizationDemoVS"));
gl.attachShader(this.shaderProgram, getShader(gl, "RasterizationDemoFS"));
gl.linkProgram(this.shaderProgram);
if (!gl.getProgramParameter(this.shaderProgram, gl.LINK_STATUS)) {
alert("Could not initialise shaders");
}
gl.useProgram(this.shaderProgram);
this.shaderProgram.vertexPositionAttribute = gl.getAttribLocation(this.shaderProgram, "position");
gl.enableVertexAttribArray(this.shaderProgram.vertexPositionAttribute);
this.shaderProgram.projectionMatrixUniform = gl.getUniformLocation(this.shaderProgram, "projectionMatrix");
this.shaderProgram.modelviewMatrixUniform = gl.getUniformLocation(this.shaderProgram, "modelViewMatrix");
}
RasterizationDemo.prototype.initTextureShaders = function() {
this.textureShaderProgram = gl.createProgram();
gl.attachShader(this.textureShaderProgram, getShader(gl, "RasterizationDemoTextureVS"));
gl.attachShader(this.textureShaderProgram, getShader(gl, "RasterizationDemoTextureFS"));
gl.linkProgram(this.textureShaderProgram);
if (!gl.getProgramParameter(this.textureShaderProgram, gl.LINK_STATUS)) {
alert("Could not initialise shaders");
}
gl.useProgram(this.textureShaderProgram);
this.textureShaderProgram.vertexPositionAttribute = gl.getAttribLocation(this.textureShaderProgram, "position");
gl.enableVertexAttribArray(this.textureShaderProgram.vertexPositionAttribute);
this.textureShaderProgram.textureCoordAttribute = gl.getAttribLocation(this.textureShaderProgram, "textureCoord");
gl.enableVertexAttribArray(this.textureShaderProgram.textureCoordAttribute);
//gl.vertexAttribPointer(this.textureShaderProgram.textureCoordAttribute, 2, gl.FLOAT, false, 0, 0);
this.textureShaderProgram.projectionMatrixUniform = gl.getUniformLocation(this.textureShaderProgram, "projectionMatrix");
this.textureShaderProgram.modelviewMatrixUniform = gl.getUniformLocation(this.textureShaderProgram, "modelViewMatrix");
}
RasterizationDemo.prototype.initBuffers = function() {
this.triangleVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, this.triangleVertexPositionBuffer);
var vertices = [
-1.0, -1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, 1.0, 0.0,
-1.0, -1.0, 0.0,
1.0, -1.0, 0.0,
1.0, 1.0, 0.0,
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
this.triangleVertexPositionBuffer.itemSize = 3;
this.triangleVertexPositionBuffer.numItems = 3 * 2;
this.textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, this.textureCoordBuffer);
var textureCoords = [
0.0, 0.0,
0.0, 1.0,
1.0, 1.0,
0.0, 0.0,
1.0, 0.0,
1.0, 1.0
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoords), gl.STATIC_DRAW);
this.textureCoordBuffer.itemSize = 2;
}
function getTime() {
var d = new Date();
return d.getMinutes() * 60.0 + d.getSeconds() + d.getMilliseconds() / 1000.0;
}
RasterizationDemo.prototype.initTextureFramebuffer = function() {
// create off-screen framebuffer
this.framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer);
this.framebuffer.width = this.prerender_width;
this.framebuffer.height = this.prerender_height;
// create RGB texture
this.framebufferTexture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, this.framebufferTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, this.framebuffer.width, this.framebuffer.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);//LINEAR_MIPMAP_NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
//gl.generateMipmap(gl.TEXTURE_2D);
// create depth buffer
this.renderbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, this.renderbuffer);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, this.framebuffer.width, this.framebuffer.height);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, this.framebufferTexture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, this.renderbuffer);
// reset state
gl.bindTexture(gl.TEXTURE_2D, null);
gl.bindRenderbuffer(gl.RENDERBUFFER, null);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
}
RasterizationDemo.prototype.drawScene = function() {
gl.bindFramebuffer(gl.FRAMEBUFFER, env.framebuffer);
gl.useProgram(this.shaderProgram);
gl.viewport(0, 0, this.prerender_width, this.prerender_height);
gl.clear(gl.COLOR_BUFFER_BIT);
var perspectiveMatrix = new J3DIMatrix4();
perspectiveMatrix.setUniform(gl, this.shaderProgram.projectionMatrixUniform, false);
var modelViewMatrix = new J3DIMatrix4();
modelViewMatrix.setUniform(gl, this.shaderProgram.modelviewMatrixUniform, false);
gl.uniform2iv(gl.getUniformLocation(this.shaderProgram, "viewport"), [getRenderTargetWidth(), getRenderTargetHeight()]);
gl.uniform1f(gl.getUniformLocation(this.shaderProgram, "time"), getTime());
gl.bindBuffer(gl.ARRAY_BUFFER, this.triangleVertexPositionBuffer);
gl.vertexAttribPointer(this.shaderProgram.vertexPositionAttribute, this.triangleVertexPositionBuffer.itemSize, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, this.textureCoordBuffer);
gl.vertexAttribPointer(this.textureShaderProgram.textureCoordAttribute, this.textureCoordBuffer.itemSize, gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLES, 0, this.triangleVertexPositionBuffer.numItems);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.useProgram(this.textureShaderProgram);
gl.viewport(0, 0, this.render_width, this.render_height);
gl.clear(gl.COLOR_BUFFER_BIT);
var perspectiveMatrix = new J3DIMatrix4();
perspectiveMatrix.setUniform(gl, this.textureShaderProgram.projectionMatrixUniform, false);
var modelViewMatrix = new J3DIMatrix4();
modelViewMatrix.setUniform(gl, this.textureShaderProgram.modelviewMatrixUniform, false);
gl.bindTexture(gl.TEXTURE_2D, this.framebufferTexture);
gl.uniform1i(gl.getUniformLocation(this.textureShaderProgram, "uSampler"), 0);
gl.bindBuffer(gl.ARRAY_BUFFER, this.triangleVertexPositionBuffer);
gl.vertexAttribPointer(this.textureShaderProgram.vertexPositionAttribute, this.triangleVertexPositionBuffer.itemSize, gl.FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, this.textureCoordBuffer);
gl.vertexAttribPointer(this.textureShaderProgram.textureCoordAttribute, this.textureCoordBuffer.itemSize, gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLES, 0, this.triangleVertexPositionBuffer.numItems);
}
RasterizationDemo.prototype.run = function() {
this.render_width = 800;
this.render_height = 400;
this.prerender_width = this.render_width;
this.prerender_height = this.render_height;
this.initTextureFramebuffer();
this.initShaders();
this.initTextureShaders();
this.initBuffers();
};
function init() {
env = new RasterizationDemo();
return env;
}
function compute(canvas)
{
env.run();
env.drawScene();
}