forked from Negin-Ghamsarian/AdaptNet-MICCAI2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_AdaptNet.py
215 lines (158 loc) · 7.72 KB
/
Train_AdaptNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
@author: Negin Ghamsarian
"""
import argparse
import logging
import os
import sys
from tqdm import tqdm
import torch
import torch.nn as nn
from torch import optim
from net import AdaptNet as Net
from utils_Binary import BasicDataset_binary as BasicDataset
from utils_Binary import save_metrics
from utils_Binary import eval_dice_IoU_binary as eval_dice_IoU
from losses_Binary import DiceBCELoss
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dir_train_img = 'Dataset_lens/imgs/train'
dir_train_mask = 'Dataset_lens/lens/train'
dir_test_img = 'Dataset_lens/imgs/test'
dir_test_mask = 'Dataset_lens/lens/test'
save_test = 'visualization_LensID/Lens/AdaptNet_lr002/'
dir_checkpoint = 'checkpoints/LensID/AdaptNet_lr003/'
csv_name = 'CSVs_AdaptNet/AdaptNet_Lens_lr002.csv'
def train_net(net,
device,
epochs=30,
batch_size=1,
lr=0.001,
val_percent=0.1,
save_cp=True,
img_size = 512):
TESTS = []
train_dataset = BasicDataset(dir_train_img, dir_train_mask, img_size)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, pin_memory=True)
n_train = len(train_dataset)
test_dataset = BasicDataset(dir_test_img, dir_test_mask, img_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False, pin_memory=True)
n_test = len(test_dataset)
writer = SummaryWriter(comment=f'_iris_AdaptNet_lr_{lr}_BS_{batch_size}_SIZE_{img_size}')
global_step = 0
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {lr}
Training size: {n_train}
Test size: {n_test}
Checkpoints: {save_cp}
Device: {device.type}
Images size: {img_size}
''')
optimizer = optim.SGD(net.parameters(), lr=lr, momentum=0.9)
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size = 2, gamma = 0.8)
criterion = DiceBCELoss()
test_counter = 1
for epoch in range(epochs):
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch + 1}/{epochs}', unit='img') as pbar:
for batch in train_loader:
imgs = batch['image']
true_masks = batch['mask']
assert imgs.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {imgs.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
imgs = imgs.to(device=device, dtype=torch.float32)
mask_type = torch.float32 if net.n_classes == 1 else torch.long
true_masks = true_masks.to(device=device, dtype=mask_type)
masks_pred = net(imgs)
loss_main = criterion(masks_pred, true_masks)
loss = loss_main
epoch_loss += loss.item()
writer.add_scalar('Loss/train', loss.item(), global_step)
pbar.set_postfix(**{'loss (batch)': loss.item()})
optimizer.zero_grad()
(loss_main).backward()
nn.utils.clip_grad_value_(net.parameters(), 0.1)
optimizer.step()
pbar.update(imgs.shape[0])
global_step += 1
if global_step % (n_train) == 0:
for tag, value in net.named_parameters():
tag = tag.replace('.', '/')
writer.add_histogram('weights/' + tag, value.data.cpu().numpy(), global_step)
writer.add_histogram('grads/' + tag, value.grad.data.cpu().numpy(), global_step)
val1, val2, val3, val4, val5, val6, val7, val8 = eval_dice_IoU(net, test_loader, device, test_counter, save_test, save=False)
TESTS.append([val1, val2, val3, val4, val5, val6, val7, val8, epoch_loss])
test_counter = test_counter+1
writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], global_step)
if net.n_classes > 1:
print("NOT IMPLEMENTED")
else:
logging.info('Validation Dice Coeff: {}'.format(val1))
logging.info('Validation IoU: {}'.format(val3))
writer.add_scalar('test/Dice', val1, global_step)
writer.add_scalar('test/IoU', val3, global_step)
writer.add_images('images', imgs, global_step)
scheduler.step()
if save_cp:
try:
os.mkdir(dir_checkpoint)
logging.info('Created checkpoint directory')
except OSError:
pass
torch.save(net.state_dict(),
dir_checkpoint + f'CP_epoch{epoch + 1}.pth')
logging.info(f'Checkpoint {epoch + 1} saved !')
val1, val2, val3, val4, val5, val6, val17, val18 = eval_dice_IoU(net, test_loader, device, test_counter, save_test, save=True)
save_metrics(TESTS, csv_name)
writer.close()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-e', '--epochs', metavar='E', type=int, default=30,
help='Number of epochs', dest='epochs')
parser.add_argument('-b', '--batch-size', metavar='B', type=int, nargs='?', default=1,
help='Batch size', dest='batchsize')
parser.add_argument('-l', '--learning-rate', metavar='LR', type=float, nargs='?', default=0.002,
help='Learning rate', dest='lr')
parser.add_argument('-f', '--load', dest='load', type=str, default=False,
help='Load model from a .pth file')
parser.add_argument('-s', '--size', dest='size', type=float, default=512,
help='Downscaling factor of the images')
parser.add_argument('-v', '--validation', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
args = get_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
net = Net(n_classes=1, n_channels=3)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n')
if args.load:
net.load_state_dict(
torch.load(args.load, map_location=device)
)
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
try:
train_net(net=net,
epochs=args.epochs,
batch_size=args.batchsize,
lr=args.lr,
device=device,
img_size=args.size,
val_percent=args.val / 100)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
try:
sys.exit(0)
except SystemExit:
os._exit(0)