-
Notifications
You must be signed in to change notification settings - Fork 3
/
Main.m
382 lines (362 loc) · 14.3 KB
/
Main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
%% Code of Generalized Mie Theory
% Version: 2.5 (2023.05.01)
% Changes in v2.3
% (1) Fix the error when nmax = 3
% (2) Add a new mode for calculating Purcell factors
% Changes in v2.4
% (1) Redefine variables and their naming
% Changes in v2.5
% (1) Use .json files to input settings
% By Ming-Wei Lee
%% Starting Program
% Clean the Workspace
clear
% Set the Temperary Path
addpath('./Functions/');
% File to be Calculated
FilePath = './InputFiles/'; % Folder Path of Input Files
FileName = 'Demo_WavelengthMode_CF_coreshell'; % File Name
% Output Figure Size (value = 0~1)
Resize = 1;
%% Information of Initiate a Job
tic
dispstat('','init'); % One time only initialization
dispstat(sprintf('Beginning the program...'),'keepthis','timestamp');
%% Loading the Input File
% --- json input file ---
Inputfile = ReadSettings(append(FilePath,FileName,'.json'));
Settings = Inputfile.Settings;
fplot = Inputfile.fplot;
if strcmp(Settings.ModeName,'wavelength') == 1
k0 = Inputfile.Settings.k0;
k0s = Inputfile.Settings.k0s;
lambda = Inputfile.Settings.lambda;
nr = Inputfile.Settings.nr;
elseif strcmp(Settings.ModeName,'angle') == 1
Ar = Settings.APos.Sph(1,1);
Atheta = Settings.APos.Sph(2,:);
Aphi = Settings.APos.Sph(3,1);
Ax = Settings.APos.Cart(1,:);
Ay = Settings.APos.Cart(2,:);
Az = Settings.APos.Cart(3,:);
end
% -----------------------
% Information of the Input File
dispstat(append('The file is imported:'),'keepthis','timestamp');
fprintf(2,append(FileName,'\n'));
% Information of the Using Mode
dispstat(sprintf(append('Using mode: ', Settings.ModeName)),'keepthis','timestamp');
% Information of the Using Structure
dispstat(sprintf(append('Using structure: ',Settings.BC)),'keepthis','timestamp');
%% Checking Whether the File Exists Setting Errors
if strcmp(Settings.BC,'simplecavity') == 1
if norm(Settings.DPos.Cart) >= Settings.rbc
error('Error: The donor dipole should be inside the cavity.');
end
elseif strcmp(Settings.BC,'sphere') == 1
if norm(Settings.DPos.Cart) <= Settings.rbc
error('Error: The donor dipole should be outside the sphere.');
end
elseif strcmp(Settings.BC,'coreshell') == 1
if norm(Settings.DPos.Cart) <= Settings.rbc(1)
error('Error: The donor dipole should be outside the shell.');
end
end
%% Pre-Processing (Reducing Computation Time)
% Transforming Coordinate
Settings.DPos.Sph = C2S(Settings.DPos.Cart);
Settings.DOri.Sph = VecTrans(Settings.DOri.Cart,Settings.DPos.Sph(2:3),'C2S');
% Pre-Calculation of Fixed Variables for Each Mode
if strcmp(Settings.ModeName,'wavelength') == 1
% Times of the 'for loop'
Settings.nn = size(Settings.nr,1);
% Coordinate Transformation
Settings.APos.Sph = C2S(Settings.APos.Cart);
Settings.AOri.Sph = VecTrans(Settings.AOri.Cart,Settings.APos.Sph(2:3),'C2S');
Settings.APos.Sph2 = C2S(Settings.APos.Cart-Settings.DPos.Cart);
% Angular Functions
Settings.DNAng = NormTauPiP(Settings.nmax,Settings.DPos.Sph(2),'reversed');
Settings.ANAng = NormTauPiP(Settings.nmax,Settings.APos.Sph(2),'normal');
elseif strcmp(Settings.ModeName,'angle') == 1
% Times of the 'for loop'
Settings.nn = size(Settings.APos.Sph,2);
% Coordinate Transformation
Settings.AOri.Sph = VecTrans(Settings.AOri.Cart,Settings.APos.Sph(2:3),'C2S');
% Radial Functions
rhoD = Settings.nr(1)*Settings.k0*Settings.DPos.Sph(1);
Settings.DRad = SphBessel(rhoD,Settings.nmax,1,'hankel1');
% Angular Functions
Settings.DNAng = NormTauPiP(Settings.nmax,Settings.DPos.Sph(2),'reversed');
% Source Coefficients
Settings.Source = SourCoeff(Settings,"Green's function only");
if Settings.APos.Sph(1) >= Settings.rbc(1)
% Layer0 Coefficients
if strcmp(Settings.BC,'sphere') == 1
Settings.Layer0 = MieSingle(Settings.nr,Settings.k0s,Settings.nmax);
elseif strcmp(Settings.BC,'coreshell') == 1
Settings.Layer0 = MieCoreShell(Settings.nr,Settings.k0s,Settings.nmax);
end
Settings.Layer0.a = Settings.Source.p.*transpose(Settings.Layer0.alpha);
Settings.Layer0.b = Settings.Source.q.*transpose(Settings.Layer0.beta);
else
% Layer1 Coefficients
if strcmp(Settings.BC,'sphere') == 1
Settings.Layer1 = MieSingle(Settings.nr,Settings.k0s,Settings.nmax);
elseif strcmp(Settings.BC,'coreshell') == 1
fprintf(2,'The feature of core/shell mapping is not supported yet.\n');
fprintf(2,'Overwrite the electric field of the inner region by zero.\n');
Settings.Layer1.gamma = 0;
Settings.Layer1.delta = 0;
end
Settings.Layer1.d = Settings.Source.p.*transpose(Settings.Layer1.delta);
Settings.Layer1.c = Settings.Source.q.*transpose(Settings.Layer1.gamma);
end
% Radial Functions of the Acceptor
rhoA = Settings.nr(1)*Settings.k0*Settings.APos.Sph(1);
Settings.ARad = SphBessel(rhoA,Settings.nmax,1,'hankel1');
elseif strcmp(Settings.ModeName,'mapping') == 1
% Times of the 'for loop'
Settings.nn = size(Settings.APos.Cart,2);
% Coordinate Transformation
Settings.APos.Sph = C2S(Settings.APos.Cart);
% Radial Functions
rhoD = Settings.nr(1)*Settings.k0*Settings.DPos.Sph(1);
if strcmp(Settings.BC,'simplecavity') == 1
Settings.DRad = SphBessel(rhoD,Settings.nmax,1,'bessel');
else
Settings.DRad = SphBessel(rhoD,Settings.nmax,1,'hankel1');
end
% Angular Functions
Settings.DNAng = NormTauPiP(Settings.nmax,Settings.DPos.Sph(2),'reversed');
% Source Coefficients
Settings.Source = SourCoeff(Settings,"Green's function only");
% Layer0 Coefficients
if strcmp(Settings.BC,'sphere') == 1
Settings.Layer0 = MieSingle(Settings.nr,Settings.k0s,Settings.nmax);
elseif strcmp(Settings.BC,'coreshell') == 1
Settings.Layer0 = MieCoreShell(Settings.nr,Settings.k0s,Settings.nmax);
elseif strcmp(Settings.BC,'simplecavity') == 1
Settings.Layer0 = MieSimCav(Settings.nr,Settings.k0s,Settings.nmax);
end
% Layer1 Coefficients
if strcmp(Settings.BC,'sphere') == 1
Settings.Layer1 = MieSingle(Settings.nr,Settings.k0s,Settings.nmax);
elseif strcmp(Settings.BC,'coreshell') == 1
fprintf(2,'The feature of core/shell mapping is not supported yet.\n');
fprintf(2,'Overwrite the electric field of the inner region by zero.\n');
Settings.Layer1.gamma = 0;
Settings.Layer1.delta = 0;
elseif strcmp(Settings.BC,'simplecavity') == 1
Settings.Layer1 = MieSimCav(Settings.nr,Settings.k0s,Settings.nmax);
end
if strcmp(Settings.BC,'simplecavity') == 1
Settings.Layer0.a = Settings.Source.r.*transpose(Settings.Layer0.alpha);
Settings.Layer0.b = Settings.Source.s.*transpose(Settings.Layer0.beta);
Settings.Layer1.d = Settings.Source.r.*transpose(Settings.Layer1.delta);
Settings.Layer1.c = Settings.Source.s.*transpose(Settings.Layer1.gamma);
else
Settings.Layer0.a = Settings.Source.p.*transpose(Settings.Layer0.alpha);
Settings.Layer0.b = Settings.Source.q.*transpose(Settings.Layer0.beta);
Settings.Layer1.d = Settings.Source.p.*transpose(Settings.Layer1.delta);
Settings.Layer1.c = Settings.Source.q.*transpose(Settings.Layer1.gamma);
end
end
%% Preallocation
if strcmp(Settings.ModeName,'wavelength') == 1
EScat = zeros(Settings.nn,3);
ImG = zeros(Settings.nn,1);
if Settings.APos.Cart ~= Settings.DPos.Cart
ImG_vec = zeros(Settings.nn,3);
end
Purcell = zeros(Settings.nn,1);
else
Etot = zeros(Settings.nn,3);
NormEtot = zeros(Settings.nn,3);
Edip = zeros(Settings.nn,3);
EtotSI = zeros(Settings.nn,3);
end
%% Main Loop
if strcmp(Settings.ModeName,'wavelength') == 1
for ii = 1:Settings.nn
Settings.k0 = k0(ii);
Settings.nr = nr(ii,:);
Settings.k0s = k0s(ii,:);
% Determing which Function is Called by the Acceptor Position
if Settings.APos.Cart == Settings.DPos.Cart
if strcmp(Settings.BC,'simplecavity') == 1
Output = SingleGR1(Settings);
else
Output = SingleGR0(Settings);
end
EScat(ii,:) = transpose(Output.EScat);
ImG(ii,:) = transpose(Output.ImG);
Purcell(ii,:) = transpose(Output.Purcell);
else
if Settings.APos.Sph(1) >= Settings.rbc(1)
Output = TwoGR0(Settings);
else
Output = TwoGR1(Settings);
end
ImG_vec(ii,:) = transpose(imag(Output.G));
Etot(ii,:) = transpose(Output.Etot);
Edip(ii,:) = transpose(Output.Edip);
NormEtot(ii,:) = transpose(Output.NEtot);
end
% Information
dispstat(sprintf('Progress: %.2f%%',(ii/Settings.nn)*100),'timestamp');
end
elseif strcmp(Settings.ModeName,'angle') == 1
for ii = 1:Settings.nn
Settings.APos.Cart = [Ax(ii); Ay(ii); Az(ii)];
Settings.APos.Sph = [Ar; Atheta(ii); Aphi];
% Determing which Function is Called by the Acceptor Position
if Settings.APos.Sph(1) >= Settings.rbc(1)
Output = TwoGR0(Settings);
else
Output = TwoGR1(Settings);
end
Etot(ii,:) = transpose(Output.Etot);
Edip(ii,:) = transpose(Output.Edip);
% Information
dispstat(sprintf('Progress: %.2f%%',(ii/Settings.nn)*100),'timestamp');
end
elseif strcmp(Settings.ModeName,'mapping') == 1
tmp1 = Settings.APos.Cart;
tmp2 = Settings.APos.Sph;
for ii = 1:Settings.nn
Settings.APos.Cart =tmp1(:,ii);
Settings.APos.Sph =tmp2(:,ii);
if Settings.APos.Sph(1) >= Settings.rbc(1)
Output = TwoGR0(Settings);
else
Output = TwoGR1(Settings);
end
Etot(ii,:) = transpose(Output.Etot);
EtotSI(ii,:) = transpose(Output.EtotSI);
Edip(ii,:) = transpose(Output.Edip);
% Information
dispstat(sprintf('Progress: %.2f%%',(ii/Settings.nn)*100),'timestamp');
end
end
%% Output Warnings
if isfield(Output,'error1') ==1
fprintf(2,append(Output.error1,'\n'));
end
%% Post-Processing
if strcmp(Settings.ModeName,'wavelength') == 1
if strcmp(Settings.Quantity,'CF') == 1
% Coupling Factor
CF = abs(Etot*Settings.AOri.Sph).^2;
% Coupling Factor along R Direction (Vacuum)
CFdip = abs(Edip*Settings.AOri.Sph).^2;
% Setting 0/0 to 0 for Etot/Edip
NormEtot(isnan(NormEtot)) = 0;
% Enhancement Factor
EF = abs(NormEtot*Settings.AOri.Sph).^2;
elseif strcmp(Settings.Quantity,'Purcell') == 1
elseif strcmp(Settings.Quantity,'ImG') == 1
if exist('ImG_vec','var') == 1
ImG = ImG_vec*Settings.AOri.Sph;
end
elseif strcmp(Settings.Quantity,'J') == 1
if exist('ImG_vec','var') == 1
ImG = ImG_vec*Settings.AOri.Sph;
end
c = 2.9979e8;
Debye = 3.33564e-30;
epsilon0 = 8.854187817e-12;
hbar = 1.05457182e-34;
const = (2*pi*1239.84193./(lambda*1e9)*2.4179893e14).^2....
/c^2*Debye^2/(pi*hbar*epsilon0);
J = const.*ImG;
end
elseif strcmp(Settings.ModeName,'angle') == 1
% Coupling Factor along R Direction (Spheres)
CF = abs(Etot*[1;0;0]).^2;
% Coupling Factor along R Direction (Vacuum)
CFdip = abs(Edip*[1;0;0]/sqrt(1)).^2;
elseif strcmp(Settings.ModeName,'mapping') == 1
% c=2.9979e8;
% const = Dpstrength*c^2*1e-5;
% Electric Field Intensity (Spheres)
EFI = vecnorm(EtotSI,2,2).^2;
% Reshape the Array
EFImap = reshape(EFI,Settings.shape);
% Electric Field Intensity (Vacuum)
EFIdip = vecnorm(Edip,2,2).^2;
% Reshape the Array
EFIdipmap = reshape(EFIdip,Settings.shape);
end
%% Plotting Figures
if strcmp(Settings.ModeName,'wavelength') == 1
if strcmp(Settings.Quantity,'CF') == 1
fplot.x = 1./lambda*1e-2;
fplot.y = CF*1e-12;
MyPlot(fplot,Resize,0);
fplot.y = CFdip*1e-12;
fplot.colorstyle = 'r-';
MyPlot(fplot,Resize,1);
if strcmp(Settings.BC,'sphere') == 1
legend({'Single Sphere','Vacuum (QED)'},'interpreter','latex');
elseif strcmp(Settings.BC,'coreshell') == 1
legend({'Core/Shell Sphere','Vacuum (QED)'},'interpreter','latex');
end
fplot.y = EF;
fplot.colorstyle = '-';
fplot.range = [-inf,inf,1e-3,1e5];
fplot.ylabel = 'Enhancement';
MyPlot(fplot,Resize,0);
if strcmp(Settings.BC,'sphere') == 1
legend({'Single Sphere'},'interpreter','latex');
elseif strcmp(Settings.BC,'coreshell') == 1
legend({'Core/Shell Sphere'},'interpreter','latex');
end
elseif strcmp(Settings.Quantity,'Purcell') == 1
% fplot.x = 1./lambda*1e4;
fplot.x = 1239.84193./(lambda*1e9);
fplot.y = Purcell;
MyPlot(fplot,Resize,0);
elseif strcmp(Settings.Quantity,'ImG') == 1
fplot.x = 1239.84193./(lambda*1e9);
fplot.y = ImG;
MyPlot(fplot,Resize,0);
elseif strcmp(Settings.Quantity,'J') == 1
fplot.x = 1239.84193./(lambda*1e9);
fplot.y = J;
MyPlot(fplot,Resize,0);
end
elseif strcmp(Settings.ModeName,'angle') == 1
if strcmp(Settings.Quantity,'CF') == 1
fplot.x = Ar*Atheta/Settings.lambda;
fplot.y = CF*1e-12;
MyPlot(fplot,Resize,0);
fplot.y = CFdip*1e-12;
fplot.colorstyle = 'b--';
MyPlot(fplot,Resize,1);
end
elseif strcmp(Settings.ModeName,'mapping') == 1
if strcmp(Settings.Quantity,'CF') == 1
figure
contourf(Settings.plotx*1e9,Settings.ploty*1e9,log10(EFImap),300,'linestyle','none');
colormap jet
colorbar
hold on
x = Settings.rbc(1)*linspace(-1,1,201);
y = sqrt(Settings.rbc(1)^2 - x.^2);
plot(x*1e9,-y*1e9,'-k','linewidth',2);
plot(x*1e9,y*1e9,'-k','linewidth',2);
figure
contourf(Settings.plotx*1e9,Settings.ploty*1e9,log10(EFIdipmap),300,'linestyle','none');
colormap jet
colorbar
hold on
x = Settings.rbc(1)*linspace(-1,1,201);
y = sqrt(Settings.rbc(1)^2 - x.^2);
plot(x*1e9,-y*1e9,'-k','linewidth',2);
plot(x*1e9,y*1e9,'-k','linewidth',2);
end
end
%% Output Information
dispstat('Computation is Finished.','keepprev','timestamp');
% rmpath('./Functions/');
toc