comments | difficulty | edit_url |
---|---|---|
true |
简单 |
给定一个字符串,编写一个函数判定其是否为某个回文串的排列之一。
回文串是指正反两个方向都一样的单词或短语。排列是指字母的重新排列。
回文串不一定是字典当中的单词。
示例1:
输入:"tactcoa" 输出:true(排列有"tacocat"、"atcocta",等等)
我们用哈希表
时间复杂度
class Solution:
def canPermutePalindrome(self, s: str) -> bool:
cnt = Counter(s)
return sum(v & 1 for v in cnt.values()) < 2
class Solution {
public boolean canPermutePalindrome(String s) {
Map<Character, Integer> cnt = new HashMap<>();
for (int i = 0; i < s.length(); ++i) {
cnt.merge(s.charAt(i), 1, Integer::sum);
}
int sum = 0;
for (int v : cnt.values()) {
sum += v & 1;
}
return sum < 2;
}
}
class Solution {
public:
bool canPermutePalindrome(string s) {
unordered_map<char, int> cnt;
for (auto& c : s) {
++cnt[c];
}
int sum = 0;
for (auto& [_, v] : cnt) {
sum += v & 1;
}
return sum < 2;
}
};
func canPermutePalindrome(s string) bool {
vis := map[rune]bool{}
cnt := 0
for _, c := range s {
if vis[c] {
vis[c] = false
cnt--
} else {
vis[c] = true
cnt++
}
}
return cnt < 2
}
function canPermutePalindrome(s: string): boolean {
const set = new Set<string>();
for (const c of s) {
if (set.has(c)) {
set.delete(c);
} else {
set.add(c);
}
}
return set.size <= 1;
}
use std::collections::HashSet;
impl Solution {
pub fn can_permute_palindrome(s: String) -> bool {
let mut set = HashSet::new();
for c in s.chars() {
if set.contains(&c) {
set.remove(&c);
} else {
set.insert(c);
}
}
set.len() <= 1
}
}
class Solution {
func canPermutePalindrome(_ s: String) -> Bool {
var cnt = [Character: Int]()
for char in s {
cnt[char, default: 0] += 1
}
var sum = 0
for count in cnt.values {
sum += count % 2
}
return sum < 2
}
}
我们用哈希表
最后判断哈希表中字符的个数是否小于
时间复杂度
class Solution:
def canPermutePalindrome(self, s: str) -> bool:
vis = set()
for c in s:
if c in vis:
vis.remove(c)
else:
vis.add(c)
return len(vis) < 2
class Solution {
public boolean canPermutePalindrome(String s) {
Set<Character> vis = new HashSet<>();
for (int i = 0; i < s.length(); ++i) {
char c = s.charAt(i);
if (!vis.add(c)) {
vis.remove(c);
}
}
return vis.size() < 2;
}
}
class Solution {
public:
bool canPermutePalindrome(string s) {
unordered_set<char> vis;
for (auto& c : s) {
if (vis.count(c)) {
vis.erase(c);
} else {
vis.insert(c);
}
}
return vis.size() < 2;
}
};