comments | difficulty | edit_url |
---|---|---|
true |
中等 |
设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
3示例 1:
/ \
5 1
/ \ / \
6 2 0 8
/ \
7 4
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1示例 2:
输入: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4说明:
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(
self, root: TreeNode, p: TreeNode, q: TreeNode
) -> TreeNode:
if root is None or root == p or root == q:
return root
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
return right if left is None else (left if right is None else root)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || root == p || root == q) {
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
return left == null ? right : (right == null ? left : root);
}
}
/* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
*
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* }
*/
class Solution {
func lowestCommonAncestor(_ root: TreeNode?, _ p: TreeNode?, _ q: TreeNode?) -> TreeNode? {
if root == nil || root === p || root === q {
return root
}
let left = lowestCommonAncestor(root?.left, p, q)
let right = lowestCommonAncestor(root?.right, p, q)
if left == nil {
return right
} else if right == nil {
return left
} else {
return root
}
}
}