comments | difficulty | edit_url | tags | |
---|---|---|---|---|
true |
Easy |
|
Table: Activity
+--------------+---------+ | Column Name | Type | +--------------+---------+ | player_id | int | | device_id | int | | event_date | date | | games_played | int | +--------------+---------+ (player_id, event_date) is the primary key (combination of columns with unique values) of this table. This table shows the activity of players of some games. Each row is a record of a player who logged in and played a number of games (possibly 0) before logging out on someday using some device.
Write a solution to find the first login date for each player.
Return the result table in any order.
The result format is in the following example.
Example 1:
Input: Activity table: +-----------+-----------+------------+--------------+ | player_id | device_id | event_date | games_played | +-----------+-----------+------------+--------------+ | 1 | 2 | 2016-03-01 | 5 | | 1 | 2 | 2016-05-02 | 6 | | 2 | 3 | 2017-06-25 | 1 | | 3 | 1 | 2016-03-02 | 0 | | 3 | 4 | 2018-07-03 | 5 | +-----------+-----------+------------+--------------+ Output: +-----------+-------------+ | player_id | first_login | +-----------+-------------+ | 1 | 2016-03-01 | | 2 | 2017-06-25 | | 3 | 2016-03-02 | +-----------+-------------+
We can use GROUP BY
to group the player_id
and then take the minimum event_date
in each group as the date when the player first logged into the platform.
import pandas as pd
def game_analysis(activity: pd.DataFrame) -> pd.DataFrame:
return (
activity.groupby("player_id")
.agg(first_login=("event_date", "min"))
.reset_index()
)
# Write your MySQL query statement below
SELECT player_id, MIN(event_date) AS first_login
FROM Activity
GROUP BY 1;