-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathevaluate.py
359 lines (326 loc) · 16.4 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import argparse
import glob
import importlib
import itertools
import json
import os
import random
import re
import sys
from collections import defaultdict
from typing import Callable
import pandas as pd
import datasets #not needed but forces check on modules being installed
sys.path.append(os.getcwd())
"""
Evaluation for code for experiments.
Evaluates an experiment as configured by command line parameters.
@authors Breck Baldwin
* Copyright 2024 Comcast Cable Communications Management, LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
"""
MODELS =['gpt-4o', 'llama-3-70b', 'finetuned-3.5', 'gpt-3.5-turbo',
'mixtral-8x7b', 'llama-3-8b']
TASKS = ['high_school_european_history', 'college_mathematics',
'geometric_shapes', 'navigate', 'professional_accounting',
'logical_deduction', 'ruin_names', 'public_relations']
SHOTS = ['0-shot', 'few_shot']
def load_runs(directory, old_format=False) -> pd.DataFrame:
"""
Loads all .csv files in the specified directory recursively and expands likely
serialized dictionaries from their respective columns.
Args:
directory (str): Directory containing .csv files.
old_format (bool): If True, convert old format files to the new format.
Returns:
pd.DataFrame: DataFrame containing concatenated data from all .csv files.
"""
files = glob.glob(os.path.join(directory, '**', '*.csv'),
recursive=True)
data_df = pd.DataFrame()
for csv_file in files:
csv_df = pd.read_csv(csv_file)
print(f"Trying {csv_file}")
if old_format:
model = None
for model_name in MODELS:
if model_name in csv_file:
model = model_name
assert model is not None
csv_df['model'] = 'gpt-35-turbo' if model == 'gpt-3.5-turbo' \
else model
model_config = {"temperature": 0.0,
"seed": 12,
"top_p_k": 0.0 if 'p0' in csv_file else 1.0}
csv_df['model_config'] = json.dumps(model_config)
task = None
for task_name in TASKS:
if task_name in csv_file:
task = task_name
assert task is not None
csv_df['task'] = task
shot = None
for shot_name in SHOTS:
if shot_name in csv_file:
shot = shot_name if shot_name != 'few_shot' else 'few'
assert shot is not None
task_config = {"prompt_type": "v2", "shots": shot}
csv_df['task_config'] = json.dumps(task_config)
csv_df['prompt'] = '{}'
csv_df['rubric'] = '{}'
csv_df['rubric_id'] = csv_df.index
csv_df['response'] = csv_df['raw_response']
m = re.match(r'.*_(\d+)\.csv', csv_file)
csv_df['run'] = int(m.group(1))
for col in ['prompt', 'model_config', 'task_config', 'rubric']:
csv_df[col] = csv_df[col].apply(lambda row: json.loads(row))
csv_df['file'] = csv_file
data_df = pd.concat([data_df, csv_df], ignore_index=True)
return data_df
def get_experiment_configs(data_df: pd.DataFrame)-> list:
"""
Returns all possible combinations of experiment configs, does
not check that configs exist together in data_df.
Args:
data_df (pd.DataFrame): Experiment runs
Returns:
list: Tuples (model, model_config, task, model_config)
"""
exp_configs = []
for model in data_df['model'].unique():
for model_config in data_df['model_config'].drop_duplicates():
for task in data_df['task'].unique():
for task_config in data_df['task_config'].drop_duplicates():
exp_configs.append((model,
model_config,
task,
task_config))
return exp_configs
def check_hand_annotated_cache(row, answer_cache_df):
"""
Check if a specific row exists in the answer cache DataFrame and return the parsed answer if found.
Args:
row (pd.Series): A pandas Series object representing a row of data with keys 'response', 'task', 'model', and 'rubric_id'.
answer_cache_df (pd.DataFrame): A pandas DataFrame containing cached answers with columns 'response', 'task', 'model', 'id', and 'parsed_answer'.
Returns:
pd.Series or None: The 'parsed_answer' column from the matching row in answer_cache_df if a match is found, otherwise None is returned and the
answer_cache_df is updated with a copy of the row that has 'parsed_answer' set to None. This will be serialized later for examination by an annotation process.
"""
answer_df = \
answer_cache_df[(answer_cache_df['response'] == row['response'])
& (answer_cache_df['task'] == row['task'])
& (answer_cache_df['model'] == row['model'])
& (answer_cache_df['rubric_id'] == row['rubric_id'])
]
if len(answer_df.index) == 1:
return answer_df['parsed_answer'].iloc[0], answer_cache_df
else:
row_copy = \
row[['response', 'task', 'model', 'rubric_id', 'rubric']].copy()
row_copy['parsed_answer'] = None
answer_cache_df = pd.concat([answer_cache_df, row_copy.to_frame().T],
ignore_index=True)
return None, answer_cache_df
def evaluate(data_df: pd.DataFrame, num_bootstrap_draws=10) -> (dict, pd.DataFrame, list):
"""
Evaluates the experiment data by computing various metrics such as TARa, TARr, and correctness.
This function processes the data grouped by model, model configuration, task, and task configuration.
It calculates agreement counts, correctness, and bootstrap estimates for accuracy.
NOTE: This code is meant to be clear rather than properly modularized. Hopefully the long format will make it clear how results are being accumulated and reported.
Arguments:
data_df (pd.DataFrame): DataFrame containing the experiment data. It is expected to have columns for model, model_config, task, task_config, and other relevant data.
num_bootstrap_draws (int): Number of bootstrap samples to draw for estimating accuracy distributions.
Returns:
tuple: A tuple containing:
- results (pd.DataFrame): DataFrame with evaluation results for each configuration.
- data_df (pd.DataFrame): Updated DataFrame with additional columns for correctness and parsed answers.
- errors (list): List of errors encountered during evaluation.
"""
data_df['correct'] = False
data_df['parsed_answer'] = None
configs = get_experiment_configs(data_df)
results = pd.DataFrame()
errors = []
total_evals = 0
task_x_rubric = set()
if os.path.exists('answer_cache.csv'):
answer_cache_df = pd.read_csv('answer_cache.csv')
else:
answer_cache_df = pd.DataFrame({'response':[], 'task': [], 'model': [],
'parsed_answer':[], 'rubric':[], 'rubric_id':[]})
for model, model_config, task, task_config in configs:
try:
task_module = importlib.import_module(f'tasks.{task}')
except ModuleNotFoundError:
print(f'Need to add {f"tasks.{task}"}, skipping eval')
continue
exp_df = data_df[(data_df['model'] == model)
& (data_df['model_config'] == model_config)
& (data_df['task'] == task)
& (data_df['task_config'] == task_config)]
print(f"{model} {model_config} {task} {task_config}")
if len(exp_df.index) == 0: #may have combos with no data
continue
total_agreement_count_raw = 0
total_agreement_count_answer = 0
num_runs = max(exp_df['run']) + 1
correct = [0] * num_runs # need to track correct for run number
any_correct_count = 0
any_wrong_count = 0
rubric_ids = exp_df['rubric_id'].unique()
num_questions = len(rubric_ids)
runs_accum = []
for id in rubric_ids:
seen_errors = defaultdict(int)
task_x_rubric.add(f"{task}x{id}")
question_df = exp_df[exp_df['rubric_id'] == id]
#question_df = question_df.reset_index(drop=True)
raw = set()
answer = set()
if not num_runs == len(question_df.index):
print(f"{model}, {model_config}, {task}, {task_config}")
error = f"runs not matching expected length, expected {num_runs}, got {len(question_df.index)} for {question_df['file'].to_list()}"
raise IndexError(error)
corrects_for_rubric = 0
run_accum = [0] * num_runs
for idx, row in question_df.iterrows(): # runs over question
raw.add(task_module.raw_fn(row))
total_evals += 1
if pd.isna(row['response']):
errors.append(f"NaN response found {model} {task} {id}")
continue
try:
parsed_answer = task_module.answer_fn(row, task_config)
if parsed_answer is None:
(parsed_answer, answer_cache_df) = \
check_hand_annotated_cache(row, answer_cache_df)
if parsed_answer is None:
error = f"No answer found {model} {task} {id}"
seen_errors[error] += 1
if seen_errors[error] == 1:
print(f"-----------------parse issue---{len(errors)}")
print(f"{error} {row['run']}")
print(f"Response: {row['response']}")
print(f"Rubric: {row['rubric']}")
errors.append(f"No answer found {model} {task} {id} {row['run']}")
answer.add(idx) # No answer will always fail TARa
print(f"No Answer Found: Repeat {seen_errors[error]} for rubric id {id}")
errors.append(f"No answer found {model} {task} {id} {row['run']}")
continue # cannot be correct so continue
else:
data_df.loc[idx,'parsed_answer'] = parsed_answer
answer.add(parsed_answer)
except LookupError as e: #LookupError is
answer.add(idx) # Blown UP is also a failure of TARa
data_df.loc[idx,'parsed_answer'] = "Blown UP"
error = f"Blown UP found {model} {task} {id} Answer: {e}"
seen_errors[error] += 1
if seen_errors[error] == 1:
print(f"------answer issue-----{len(errors)}---")
print(f"{error} {row['run']}")
print(f"Response: {row['response']}")
print(f"Rubric: {row['rubric']}")
errors.append(f"Blown UP {model} {task} {id} {row['run']}")
print(f"Blown UP: Repeat {seen_errors[error]} for rubric id {id}")
continue # can't be correct so continue
if task_module.correct_fn(row, task_config):
correct[row['run']] += 1
run_accum[row['run']] = 1
data_df.loc[idx,'correct'] = True
corrects_for_rubric += 1
if len(raw) == 1:
total_agreement_count_raw += 1
if len(answer) == 1:
total_agreement_count_answer += 1
if corrects_for_rubric != num_runs:
any_wrong_count += 1
if corrects_for_rubric > 0:
any_correct_count += 1
runs_accum.append(run_accum)
# for N iterations, draw
bootstrap_correct_counts = [0] * num_bootstrap_draws
for d in range(num_bootstrap_draws):
for run in runs_accum:
bootstrap_correct_counts[d] += random.choice(run)
bootstrap_pct = [c/num_questions for c in bootstrap_correct_counts]
result_d = {'model': model,
'model_config': model_config,
'task': task,
'task_config': task_config,
'TACr': total_agreement_count_raw,
'TARr': total_agreement_count_raw/num_questions,
'TACa': total_agreement_count_answer,
'TARa': total_agreement_count_answer/num_questions,
'correct_count_per_run': correct,
'correct_pct_per_run': [c/num_questions for c in correct],
'num_questions': num_questions,
'N': num_runs,
'best_possible_count': any_correct_count,
'best_possible_accuracy': any_correct_count/num_questions,
'worst_possible_count': num_questions-any_wrong_count,
'worst_possible_accuracy': (num_questions-any_wrong_count)/num_questions,
'spread': any_correct_count/num_questions -
(num_questions-any_wrong_count)/num_questions,
'bootstrap_counts': sorted(bootstrap_correct_counts),
'bootstrap_pcts': sorted(bootstrap_pct),
'date': exp_df['date'].iloc[0]
}
result_s = pd.Series(result_d)
results = \
pd.concat([results, result_s.to_frame().T], ignore_index=True)
print((f"{len(seen_errors.keys()):,} rubrics had parsing problems for"
+ f" {len(errors):,} task x rubrics for {total_evals:,} total"
+ f" evaluations"))
return results, data_df, errors
def format_to_pct(cell):
"""
Converts a float or a list of floats to percentage string format.
Args:
cell (float or list): A float or a list of floats to be converted.
Returns:
str or list: A percentage string if input is a float, or a list of percentage strings if input is a list of floats.
If the input is neither a float nor a list, it returns the input unchanged.
"""
if isinstance(cell, float):
return f"{cell:.1%}"
elif isinstance(cell, list):
return [f"{x:.1%}" if isinstance(x, float) else x for x in cell]
else:
return cell
if __name__ == "__main__":
usage_message = ("python evaluate.py -d local_runs/"
+ "\npython evaluate.py -h shows help message and more options")
epilog_message = "Documentation for project is at: https://github.com/Comcast/llm-stability/blob/main/README.md"
parser = argparse.ArgumentParser(usage=usage_message, epilog=epilog_message)
parser.add_argument("-d", "--directory", required=True,
help=("path to data dir to timestamp, e.g., "
+ "experiments/low_temp/local_runs/10_tasks/2024-11-29_13-49-06/"))
parser.add_argument("-eo", "--eval_orig",
action="store_true",
required=False,
default=False,
help="Evaluate old run format from v2 paper")
parser.add_argument("-npp", "--no_pretty_print_percentages",
required=False,
default=False,
action="store_true",
help="Disables printing ratios as percentage with one digit of precision, keeps full precision and floats")
command_args = parser.parse_args()
data_df = load_runs(command_args.directory, command_args.eval_orig)
(eval_df, dict, errors) = evaluate(data_df)
if not command_args.no_pretty_print_percentages:
eval_df = eval_df.map(format_to_pct)
print(eval_df)
eval_df.to_csv("stability_eval.csv")
print("Open stability_eval.csv in your favorite spreadsheet for results")