-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethod.py
210 lines (148 loc) · 13.1 KB
/
method.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
from tqdm import tqdm
import torchmetrics
from utils import save_eval_data
import numpy as np
def get_top_k_ambiguous_classes_0s_per_image(global_image_encodings,global_labels,caption_encodings,run_params):
k = run_params['k_ambiguous_imagewise_classes']
similarity_matrix = torch.matmul(global_image_encodings, caption_encodings.T)
top_k_predictions = torch.topk(similarity_matrix,k,dim=1).indices
return top_k_predictions
def get_selection_masks_from_vlm_feedback_imagewise(global_selection_image_encodings,global_eval_labels,description_encodings,top_k_minus_one_ambiguous_classes_acc,class_indices_tensor,run_params):
image_language_similarity_matrix = torch.matmul(global_selection_image_encodings, description_encodings.T)
language_image_similarity_matrix_class_avg =image_language_similarity_matrix.T.reshape(len(description_encodings),len(class_indices_tensor),run_params['n_reference_samples']).mean(dim=2)
selection_masks_acc = torch.zeros(len(global_eval_labels),run_params['k_ambiguous_imagewise_classes'],len(class_indices_tensor)+len(description_encodings),dtype=torch.float16,device=run_params['calculation_device'])
def create_selection_mask(length,true_indices):
mask = torch.zeros(length,dtype=torch.float16,device=run_params['calculation_device'])
mask[true_indices] = 1
return mask
for i,amb_classes_entry in tqdm(enumerate(top_k_minus_one_ambiguous_classes_acc)):
image_top_k_masks_acc = torch.zeros(run_params['k_ambiguous_imagewise_classes'],len(class_indices_tensor)+len(description_encodings))
mean_sim_values_of_ambiguous_classes = language_image_similarity_matrix_class_avg[:,amb_classes_entry]
for j,class_label in enumerate(amb_classes_entry):
pseudo_gt_label = class_indices_tensor[class_label]
mean_sim_values_pseudo_gt_label = language_image_similarity_matrix_class_avg[:,pseudo_gt_label]
differences = mean_sim_values_pseudo_gt_label.unsqueeze(1) - mean_sim_values_of_ambiguous_classes
all_differences_greater_zero = torch.all(differences >= 0,dim=1)
mean_differences = torch.mean(differences,dim=1)
relevant_mean_differences = mean_differences[all_differences_greater_zero]
relevant_differences_sorted_values, relevant_differences_sorted_indices = torch.sort(relevant_mean_differences,descending=True)
index_tracker = torch.arange(len(mean_differences),device=run_params['calculation_device'])
n_most_relevant_indices = relevant_differences_sorted_indices[:run_params['m_relevant_descriptions']]
relevant_description_indices = index_tracker[all_differences_greater_zero][n_most_relevant_indices]
selection_mask = create_selection_mask(len(index_tracker),relevant_description_indices)
class_mask = create_selection_mask(len(class_indices_tensor),pseudo_gt_label)
image_top_k_masks_acc[j] = torch.cat((class_mask,selection_mask),dim=0)
selection_masks_acc[i] = image_top_k_masks_acc
return selection_masks_acc
def eval_cls_ful_descriptions_imagewise(cls_description_encodings,global_eval_image_encodings,global_eval_labels,run_params,class_indices_str,top_k_ambiguous_indices):
top_k_ambiguous_indices_tensor = torch.tensor(top_k_ambiguous_indices,dtype=torch.long,device=run_params['calculation_device'])
description_ensembling_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
description_maxing_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
reshaped = cls_description_encodings.reshape((len(global_eval_image_encodings),run_params['k_ambiguous_imagewise_classes'],run_params['m_relevant_descriptions'],-1)).to(run_params['calculation_device'])
img_lang_sims = torch.einsum('ab,acdb->acd',global_eval_image_encodings,reshaped)
ensembled_sims = img_lang_sims.mean(dim=-1)
ensemble_preds = ensembled_sims.argmax(dim=-1)
predictions_ensembling = top_k_ambiguous_indices_tensor[torch.arange(len(global_eval_image_encodings)),ensemble_preds.to(run_params['calculation_device'])]
predictions_ensembling = predictions_ensembling.to(run_params['calculation_device'])
max_preds,_ = img_lang_sims.max(dim=-1)
max_preds = max_preds.argmax(dim=-1)
predictions_maxing = top_k_ambiguous_indices_tensor[torch.arange(len(global_eval_image_encodings)),max_preds.to(run_params['calculation_device'])]
predictions_maxing = predictions_maxing.to(run_params['calculation_device'])
description_ensembling_accuracy_metric(predictions_ensembling,global_eval_labels)
description_maxing_accuracy_metric(predictions_maxing,global_eval_labels)
eval_logs = {}
eval_logs["eval_method"] = 'classname-containing descriptions, selected, local'
eval_logs["cls_weight"] = [float(cls_weight) for cls_weight in eval(run_params['cls_weight_range'])]
eval_logs["top_1_accuracy, language ensembling"] = [100*description_ensembling_accuracy_metric.compute().item() for _ in range(len(eval_logs["cls_weight"]))]
eval_logs["top_1_accuracy, language maxing"] = [100*description_maxing_accuracy_metric.compute().item() for _ in range(len(eval_logs["cls_weight"]))]
eval_logs["run_params"] = run_params
save_eval_data('classname_containing_selected',eval_logs,run_params)
def eval_cls_ful_des_plus_cls_less_des_imagewise(caption_encodings,description_encodings,selection_masks_vlm_feedback,global_eval_image_encodings,global_eval_labels,run_params,class_indices_str,selection_mask_name,top_k_ambiguous_indices):
language_encodings = torch.cat([caption_encodings,description_encodings],dim=0)
global_image_description_similarity_matrix = torch.matmul(global_eval_image_encodings, language_encodings.T)
description_masks_normalized = selection_masks_vlm_feedback[:,:,len(caption_encodings):]/torch.sum(selection_masks_vlm_feedback[:,:,len(caption_encodings):],dim=2,keepdim=True)
cls_weight_acc = []
accuracy_acc = []
for cls_weight in tqdm(eval(run_params['cls_weight_range'])):
description_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
cls_masks = selection_masks_vlm_feedback[:,:,:len(caption_encodings)].clone()
cls_masks[cls_masks==1] = cls_weight
selection_masks_normalized = torch.cat([cls_masks,description_masks_normalized],dim=2)
#element-wise multiplication with the selection_mask as a mask
global_image_selection_similarity_matrix = torch.einsum('ij,ikj->ik',global_image_description_similarity_matrix,selection_masks_normalized)
description_prediction_indices = torch.argmax(global_image_selection_similarity_matrix,dim=1)
#now access the indices of the top k ambiguous classes and get the corresponding class labels
description_predictions = top_k_ambiguous_indices[torch.arange(top_k_ambiguous_indices.size(0)),description_prediction_indices]
description_accuracy_metric(description_predictions,global_eval_labels)
cls_weight_acc.append(float(cls_weight))
accuracy_acc.append(100*description_accuracy_metric.compute().item())
eval_logs = {}
eval_logs["eval_method"] = '1 classname-containing description + classname-free descriptions, local eval'
eval_logs["selection_mask_name"] = selection_mask_name
eval_logs["top_1_accuracy, language ensembling"] = accuracy_acc
eval_logs["cls_weight"] = cls_weight_acc
eval_logs["run_params"] = run_params
save_eval_data(f'classname_free_{selection_mask_name}',eval_logs,run_params)
caption_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
global_image_caption_similarity_matrix = torch.matmul(global_eval_image_encodings, caption_encodings.T)
caption_accuracy_metric(global_image_caption_similarity_matrix,global_eval_labels)
eval_logs_0 = {}
eval_logs_0["eval_method"] = '1 classname-containing caption'
eval_logs_0["selection_mask_name"] = ''
eval_logs_0["top_1_accuracy, single language point"] = [100*caption_accuracy_metric.compute().item() for _ in range(len(cls_weight_acc))]
eval_logs_0["cls_weight"] = cls_weight_acc
eval_logs_0["run_params"] = run_params
save_eval_data('non_ensembled_standard_clip',eval_logs_0,run_params)
def eval_cls_ful_des_plus_cls_less_des_classwise(caption_encodings,description_encodings,selection_mask_acc,class_indices_str,run_params,selection_mask_name,global_image_encodings,global_labels):
language_encodings = torch.cat([caption_encodings,description_encodings],dim=0)
global_image_description_similarity_matrix = torch.matmul(global_image_encodings, language_encodings.T)
cls_weight_acc = []
accuracy_acc = []
for cls_weight in tqdm(eval(run_params['cls_weight_range'])):
description_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
global_images_classwise_descriptions_acc = []
for class_idx in class_indices_str:
caption_mask = torch.zeros(len(class_indices_str),dtype=torch.float16,device=run_params['calculation_device'])
caption_mask[int(class_idx)] = cls_weight
if torch.sum(selection_mask_acc[class_idx]) != 0:
selection_mask = torch.cat([caption_mask,(selection_mask_acc[class_idx]/torch.sum(selection_mask_acc[class_idx])).to(run_params['calculation_device'])],dim=0)
else:
selection_mask = torch.cat([caption_mask,selection_mask_acc[class_idx]],dim=0)
global_image_class_description_similarity_matrix = torch.matmul(global_image_description_similarity_matrix,selection_mask)
global_images_classwise_descriptions_acc.append(global_image_class_description_similarity_matrix)
global_images_classwise_descriptions_acc = torch.stack(global_images_classwise_descriptions_acc)
description_predictions = torch.argmax(global_images_classwise_descriptions_acc,dim=0)
global_labels = global_labels.to(run_params['calculation_device'])
description_accuracy_metric(description_predictions,global_labels)
cls_weight_acc.append(float(cls_weight))
accuracy_acc.append(100*description_accuracy_metric.compute().item())
eval_logs = {}
eval_logs["eval_method"] = '1 classname-containing description + classwise, classname-free descriptions, global eval'
eval_logs["selection_mask_name"] = selection_mask_name
eval_logs["top_1_accuracy, language ensembling"] = accuracy_acc
eval_logs["cls_weight"] = cls_weight_acc
eval_logs["run_params"] = run_params
save_eval_data(f'classname_free_{selection_mask_name}',eval_logs,run_params)
def eval_cls_ful_descriptions_classwise(cls_description_encodings_dict,global_eval_image_encodings,global_eval_labels,run_params,class_indices_str,selection_mask_name):
description_ensembling_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
description_maxing_accuracy_metric = torchmetrics.Accuracy(task="multiclass",num_classes=len(class_indices_str)).to(run_params['calculation_device'])
sim_acc_ensembling = torch.zeros((len(global_eval_image_encodings),len(class_indices_str)),dtype=torch.float16,device=run_params['calculation_device'])
sim_acc_maxing = torch.zeros((len(global_eval_image_encodings),len(class_indices_str)),dtype=torch.float16,device=run_params['calculation_device'])
for i,(class_idx_str, description_encodings_tensor) in enumerate(cls_description_encodings_dict.items()):
ensembled_similarities = torch.einsum('ij,mj->im',global_eval_image_encodings,description_encodings_tensor).mean(dim=1)
maxed_similarities = torch.einsum('ij,mj->im',global_eval_image_encodings,description_encodings_tensor).max(dim=1).values
sim_acc_ensembling[:,i] = ensembled_similarities.clone()
sim_acc_maxing[:,i] = maxed_similarities.clone()
predictions_acc_ensembling = torch.argmax(sim_acc_ensembling,dim=1)
predictions_acc_maxing = torch.argmax(sim_acc_maxing,dim=1)
description_ensembling_accuracy_metric(predictions_acc_ensembling,global_eval_labels)
description_maxing_accuracy_metric(predictions_acc_maxing,global_eval_labels)
eval_logs = {}
eval_logs["eval_method"] = 'classname-containing descriptions classwise, global eval'
eval_logs["selection_mask_name"] = selection_mask_name
eval_logs["cls_weight"] = [float(cls_weight) for cls_weight in eval(run_params['cls_weight_range'])]
eval_logs["top_1_accuracy, language ensembling"] = [100*description_ensembling_accuracy_metric.compute().item() for _ in range(len(eval_logs["cls_weight"]))]
eval_logs["top_1_accuracy, language maxing"] = [100*description_maxing_accuracy_metric.compute().item() for _ in range(len(eval_logs["cls_weight"]))]
eval_logs["run_params"] = run_params
save_eval_data(f'classname_containing_{selection_mask_name}',eval_logs,run_params)