-
Notifications
You must be signed in to change notification settings - Fork 140
/
img_augm.py
187 lines (150 loc) · 7.44 KB
/
img_augm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# Copyright (C) 2018 Artsiom Sanakoyeu and Dmytro Kotovenko
#
# This file is part of Adaptive Style Transfer
#
# Adaptive Style Transfer is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Adaptive Style Transfer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
import scipy.misc
import cv2
from PIL import Image
class Augmentor():
def __init__(self,
crop_size=(256, 256),
scale_augm_prb=0.5, scale_augm_range=0.2,
rotation_augm_prb=0.5, rotation_augm_range=0.15,
hsv_augm_prb=1.0,
hue_augm_shift=0.05,
saturation_augm_shift=0.05, saturation_augm_scale=0.05,
value_augm_shift=0.05, value_augm_scale=0.05,
affine_trnsfm_prb=0.5, affine_trnsfm_range=0.05,
horizontal_flip_prb=0.5,
vertical_flip_prb=0.5):
self.crop_size = crop_size
self.scale_augm_prb = scale_augm_prb
self.scale_augm_range = scale_augm_range
self.rotation_augm_prb = rotation_augm_prb
self.rotation_augm_range = rotation_augm_range
self.hsv_augm_prb = hsv_augm_prb
self.hue_augm_shift = hue_augm_shift
self.saturation_augm_scale = saturation_augm_scale
self.saturation_augm_shift = saturation_augm_shift
self.value_augm_scale = value_augm_scale
self.value_augm_shift = value_augm_shift
self.affine_trnsfm_prb = affine_trnsfm_prb
self.affine_trnsfm_range = affine_trnsfm_range
self.horizontal_flip_prb = horizontal_flip_prb
self.vertical_flip_prb = vertical_flip_prb
def __call__(self, image, is_inference=False):
if is_inference:
return cv2.resize(image, None, fx=self.crop_size[0], fy=self.crop_size[1], interpolation=cv2.INTER_CUBIC)
# If not inference stage apply the pipeline of augmentations.
if self.scale_augm_prb > np.random.uniform():
image = self.scale(image=image,
scale_x=1. + np.random.uniform(low=-self.scale_augm_range, high=-self.scale_augm_range),
scale_y=1. + np.random.uniform(low=-self.scale_augm_range, high=-self.scale_augm_range)
)
rows, cols, ch = image.shape
image = np.pad(array=image, pad_width=[[rows // 4, rows // 4], [cols // 4, cols // 4], [0, 0]], mode='reflect')
if self.rotation_augm_prb > np.random.uniform():
image = self.rotate(image=image,
angle=np.random.uniform(low=-self.rotation_augm_range*90.,
high=self.rotation_augm_range*90.)
)
if self.affine_trnsfm_prb > np.random.uniform():
image = self.affine(image=image,
rng=self.affine_trnsfm_range
)
image = image[(rows // 4):-(rows // 4), (cols // 4):-(cols // 4), :]
# Crop out patch of desired size.
image = self.crop(image=image,
crop_size=self.crop_size
)
if self.hsv_augm_prb > np.random.uniform():
image = self.hsv_transform(image=image,
hue_shift=self.hue_augm_shift,
saturation_shift=self.saturation_augm_shift,
saturation_scale=self.saturation_augm_scale,
value_shift=self.value_augm_shift,
value_scale=self.value_augm_scale)
if self.horizontal_flip_prb > np.random.uniform():
image = self.horizontal_flip(image)
if self.vertical_flip_prb > np.random.uniform():
image = self.vertical_flip(image)
return image
def scale(self, image, scale_x, scale_y):
"""
Args:
image:
scale_x: float positive value. New horizontal scale
scale_y: float positive value. New vertical scale
Returns:
"""
image = cv2.resize(image, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_CUBIC)
return image
def rotate(self, image, angle):
"""
Args:
image: input image
angle: angle of rotation in degrees
Returns:
"""
rows, cols, ch = image.shape
rot_M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)
image = cv2.warpAffine(image, rot_M, (cols, rows))
return image
def crop(self, image, crop_size=(256, 256)):
rows, cols, chs = image.shape
x = int(np.random.uniform(low=0, high=max(0, rows - crop_size[0])))
y = int(np.random.uniform(low=0, high=max(0, cols - crop_size[1])))
image = image[x:x+crop_size[0], y:y+crop_size[1], :]
# If the input image was too small to comprise patch of size crop_size,
# resize obtained patch to desired size.
if image.shape[0] < crop_size[0] or image.shape[1] < crop_size[1]:
image = scipy.misc.imresize(arr=image, size=crop_size)
return image
def hsv_transform(self, image,
hue_shift=0.2,
saturation_shift=0.2, saturation_scale=0.2,
value_shift=0.2, value_scale=0.2,
):
image = Image.fromarray(image)
hsv = np.array(image.convert("HSV"), 'float64')
# scale the values to fit between 0 and 1
hsv /= 255.
# do the scalings & shiftings
hsv[..., 0] += np.random.uniform(-hue_shift, hue_shift)
hsv[..., 1] *= np.random.uniform(1. / (1. + saturation_scale), 1. + saturation_scale)
hsv[..., 1] += np.random.uniform(-saturation_shift, saturation_shift)
hsv[..., 2] *= np.random.uniform(1. / (1. + value_scale), 1. + value_scale)
hsv[..., 2] += np.random.uniform(-value_shift, value_shift)
# cut off invalid values
hsv.clip(0.01, 0.99, hsv)
# round to full numbers
hsv = np.uint8(np.round(hsv * 254.))
# convert back to rgb image
return np.asarray(Image.fromarray(hsv, "HSV").convert("RGB"))
def affine(self, image, rng):
rows, cols, ch = image.shape
pts1 = np.float32([[0., 0.], [0., 1.], [1., 0.]])
[x0, y0] = [0. + np.random.uniform(low=-rng, high=rng), 0. + np.random.uniform(low=-rng, high=rng)]
[x1, y1] = [0. + np.random.uniform(low=-rng, high=rng), 1. + np.random.uniform(low=-rng, high=rng)]
[x2, y2] = [1. + np.random.uniform(low=-rng, high=rng), 0. + np.random.uniform(low=-rng, high=rng)]
pts2 = np.float32([[x0, y0], [x1, y1], [x2, y2]])
affine_M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, affine_M, (cols, rows))
return image
def horizontal_flip(self, image):
return image[:, ::-1, :]
def vertical_flip(self, image):
return image[::-1, :, :]