-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathClusterGSEA.java
249 lines (228 loc) · 9.13 KB
/
ClusterGSEA.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package tappas;
import java.util.ArrayList;
import java.util.BitSet;
import java.util.HashSet;
import java.util.Set;
/**
*
* @author Hector del Risco - [email protected] & Pedro Salguero - [email protected]
*/
public class ClusterGSEA extends AppObject {
// MIN_SIMILARITY_COUNT should be set differently for genes and transcripts
private int MIN_SIMILAR_TERMS = 0;
private int MIN_CLUSTER_NODES = 0;
private int MIN_SEEDING_NODES = 0;
//maybe we have to change values
private double KAPPA_THRESHOLD = 0.35;
private double SEED_PCT_THRESHOLD = 0.0;
private double GROUP_PCT_THRESHOLD = 0.0;
public double pVal;
public String list;
public ClusterGSEA(DlgGSEACluster.Params params) {
super(null, null);
this.pVal = params.pVal;
this.list = params.list;
}
public double getMinKappa() { return KAPPA_THRESHOLD; }
public double getpVal() { return pVal; }
public String getList() { return list; }
public ClusterData getClusters(int cols, ArrayList<BitSet> lstTermMembers) {
ArrayList<ClusterDef> lstPreClusters = new ArrayList<>();
ArrayList<ClusterDef> lstClusters = new ArrayList<>();
ArrayList<ArrayList<Integer>> lstClusterNums = new ArrayList<>();
ArrayList<double[]> lstKappas = new ArrayList<>();
ArrayList<int[]> lstShared = new ArrayList<>();
ClusterData cd = new ClusterData(lstKappas, lstShared, lstClusterNums, lstClusters);
if(lstTermMembers != null && lstTermMembers.size() > 0) {
int terms = lstTermMembers.size();
double [][] kappas = new double[terms][terms];
int [][] shared = new int[terms][terms];
getKappas(cols, lstTermMembers, kappas, shared);
// get initial seeds
int cnum = 1;
for(int row = 0; row < shared.length; row++) {
ArrayList<Integer> members = getSeedMembers(row, shared);
if(members != null)
lstPreClusters.add(new ClusterDef(cnum++, members));
lstKappas.add(kappas[row]);
lstShared.add(shared[row]);
}
// merge clusters
mergeClusters(lstPreClusters);
// set cluster(s) for each member
int num = 1;
int cnt = lstTermMembers.size();
for(int i = 0; i < cnt; i++)
lstClusterNums.add(new ArrayList<>());
for(ClusterDef cdef : lstPreClusters) {
if(cdef.members.size() >= MIN_CLUSTER_NODES) {
lstClusters.add(cdef);
for(int termIdx : cdef.members)
lstClusterNums.get(termIdx).add(num);
cdef.num = num++;
}
}
}
return cd;
}
private void getKappas(int cols, ArrayList<BitSet> termGenes, double [][] kappas, int [][] shared) {
int terms = termGenes.size();
app.logDebug("Calculate kappas for " + terms + " terms by " + cols + " transcripts or genes matrix.");
// get kappa values
KappaData kappaData;
int mid = (terms + 1) / 2;
for(int a = 0; a < terms; a++) {
for(int b = 0; b < terms; b++) {
if(a == b)
kappas[a][b] = 1;
else {
kappaData = calcKappa(cols, termGenes.get(a), termGenes.get(b));
kappas[a][b] = kappaData.kappa;
shared[a][b] = kappaData.shared;
}
}
}
}
// using bitsets turned out to have an unexpected issue, all the bits used to store the set
// (based on 64 bit storage unit - will vary) are included in the computations
// decided to leave it as is and just step through the bits one by one just like an array
private KappaData calcKappa(int cols, BitSet a, BitSet b) {
int ones = 0;
int zeros = 0;
int row1 = 0;
int col1 = 0;
int row0 = 0;
int col0 = 0;
boolean aval;
for(int col = 0; col < cols; col++) {
aval = a.get(col);
if(aval == b.get(col)) {
if(aval) { ones++; row1++; col1++; }
else { zeros++; row0++; col0++; }
}
else {
if(aval) { row0++; col1++; }
else { row1++; col0++; }
}
}
double Kab = 0;
if(ones >= MIN_SIMILAR_TERMS) {
double Tab = (double) cols;
double Oab = (ones + zeros) / Tab;
double Aab = ((double)row1 * col1 + (double)row0 * col0) / (Tab * Tab);
Kab = (Oab - Aab) / (1 - Aab);
//if(Kab > 0.1 && ones > 10)
// System.out.println("tab: " + Tab + ", oab: " + Oab + ", aab: " + Aab + ", kab: " + Kab + ", ones: " + ones);
}
return new KappaData(Kab, ones);
}
private ArrayList<Integer> getSeedMembers(int idx, int[][] kappas) {
ArrayList<Integer> seedMembers = null;
int cnt = 0;
int n = kappas.length;
int[] members = new int[n];
// check if it meets the initial group membership requirement
for(int i = 0; i < n; i++) {
if(i != idx) {
if(kappas[idx][i] >= KAPPA_THRESHOLD)
members[cnt++] = i;
}
}
//System.out.println("idx: " + idx + ", mbrs: " + cnt + ", min: " + MIN_KAPPA_COUNT);
if(cnt >= MIN_SEEDING_NODES) {
double mrcnt = cnt * (cnt - 1); // we are double checking ab and ba ( / 2);
int mbr, grpmbr;
int subcnt = 0;
for(int mbridx = 0; mbridx < cnt; mbridx++) {
mbr = members[mbridx];
for(int i = 0; i < cnt; i++) {
grpmbr = members[i];
if(grpmbr != mbr) {
//System.out.println("mbr: " + mbr + ", grpmbr: " + grpmbr + ", val: " + kappas[mbr][grpmbr]);
if(kappas[mbr][grpmbr] >= KAPPA_THRESHOLD)
subcnt++;
}
}
}
if(((double)subcnt / mrcnt) > SEED_PCT_THRESHOLD) {
seedMembers = new ArrayList<>();
seedMembers.add(idx);
//System.out.print("Seed " + idx + ": " + idx);
for(int i = 0; i < cnt; i++) {
seedMembers.add(members[i]);
//System.out.print(", " + members[i]);
}
//System.out.print("\n");
}
}
return seedMembers;
}
private void mergeClusters(ArrayList<ClusterDef> lst) {
int cnt = lst.size();
for(int i = 0; i < cnt; i++) {
mergeCluster(i, lst);
cnt = lst.size();
}
}
private void mergeCluster(int idx, ArrayList<ClusterDef> lst) {
ArrayList<ClusterData> lstnew = new ArrayList<>();
int cnt = lst.size();
//System.out.println("mergClusters for idx [" + idx + "] " + lst.get(idx).num);
for(int i = 1; (idx + i) < cnt; i++) {
HashSet src = new HashSet();
src.addAll(lst.get(idx).members);
HashSet dst = new HashSet();
dst.addAll(lst.get(idx+i).members);
Set<Integer> intersection = new HashSet<>(src);
intersection.retainAll(dst);
// Note: not sure if we should be using the min size of the two clusters
if((double)intersection.size() / Math.min(src.size(), dst.size()) > GROUP_PCT_THRESHOLD) {
Set<Integer> union = new HashSet<>(src);
union.addAll(dst);
//System.out.println("Can merge [" + idx + "] " + lst.get(idx).num + " with [" + (idx+i) + "] " + lst.get(idx+i).num);
ArrayList<Integer> members = lst.get(idx).members;
members.clear();
members.addAll(union);
lst.remove(idx+i);
mergeCluster(idx, lst);
break;
}
}
}
//
// Data Classes
//
public static class ClusterData {
ArrayList<double[]> kappas;
ArrayList<int[]> shared;
ArrayList<ArrayList<Integer>> clusterNums;
ArrayList<ClusterDef> clusters;
public ClusterData(ArrayList<double[]> kappas, ArrayList<int[]> shared, ArrayList<ArrayList<Integer>> clusterNums, ArrayList<ClusterDef> clusters) {
this.kappas = kappas;
this.shared = shared;
this.clusterNums = clusterNums;
this.clusters = clusters;
}
}
public static class ClusterDef {
int num;
ArrayList<Integer> members;
public ClusterDef(int num, ArrayList<Integer> members) {
this.num = num;
this.members = members;
}
}
public static class KappaData {
double kappa;
int shared;
public KappaData(double kappa, int shared) {
this.kappa = kappa;
this.shared = shared;
}
}
}