-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDlgDEAnalysis.java
477 lines (442 loc) · 20.6 KB
/
DlgDEAnalysis.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package tappas;
import javafx.beans.value.ObservableValue;
import javafx.scene.control.*;
import javafx.stage.Window;
import tappas.DataApp.DataType;
import tappas.DataApp.EnumData;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Optional;
/**
*
* @author Hector del Risco - [email protected] & Pedro Salguero - [email protected]
*/
public class DlgDEAnalysis extends DlgBase {
TextField txtSigValue, txtFCValue, txtR2Cutoff, txtK;
RadioButton rbTrans, rbProteins, rbGenes;
ChoiceBox cbReps, cbMethods;
CheckBox chkMclust;
Label lblReplicate, lblR2Cutoff, lblR2Default, lblK, lblFC;
DataApp.ExperimentType expType = project.data.getExperimentType();
public DlgDEAnalysis(Project project, Window window) {
super(project, window);
}
public Params showAndWait(Params dfltParams) {
if(createDialog("DEAParams.fxml", "Differential Expression Analysis Parameters", true, "Help_Dlg_DEA.html")) {
if(dfltParams == null)
dfltParams = new Params(project);
// get control objects
lblReplicate = (Label) scene.lookup("#lblReplicate");
lblR2Cutoff = (Label) scene.lookup("#lblR2Cutoff");
lblR2Default = (Label) scene.lookup("#lblR2Default");
lblFC = (Label) scene.lookup("#lblFC");
txtR2Cutoff = (TextField) scene.lookup("#txtR2Cutoff");
txtSigValue = (TextField) scene.lookup("#txtSigValue");
txtFCValue = (TextField) scene.lookup("#txtFCValue");
lblK = (Label) scene.lookup("#lblK");
txtK = (TextField) scene.lookup("#txtK");
chkMclust = (CheckBox) scene.lookup("#chkMclust");
rbTrans = (RadioButton) scene.lookup("#rbTrans");
rbProteins = (RadioButton) scene.lookup("#rbProteins");
rbGenes = (RadioButton) scene.lookup("#rbGenes");
cbReps = (ChoiceBox) scene.lookup("#cbReplicates");
// setup dialog
setProjectName();
cbMethods = (ChoiceBox) scene.lookup("#cbMethods");
// SHOW EDGER OR NOT IF DATA NORMALIZED
if(project.data.normalized){
for(MethodData method : Params.lstMethodsDataNormalized) {
if(method.expType.equals(expType))
cbMethods.getItems().add(method.name);
}
}else{
for(MethodData method : Params.lstMethods) {
if(method.expType.equals(expType))
cbMethods.getItems().add(method.name);
}
}
int maxDegree = Math.max(1, project.data.getTimePoints() - 1);
if(project.data.isTimeCourseExpType()) {
lblReplicate.setText("Polynomial Degree:");
txtR2Cutoff.setVisible(true);
lblR2Cutoff.setVisible(true);
lblR2Default.setVisible(true);
lblK.setVisible(true);
txtK.setVisible(true);
chkMclust.setVisible(true);
cbReps.setPrefWidth(84);
cbReps.setMaxWidth(84);
for(int i = 1; i <= maxDegree; i++)
cbReps.getItems().add("" + i);
txtR2Cutoff.setText("" + dfltParams.R2Cutoff);
txtK.setText("" + dfltParams.k);
chkMclust.selectedProperty().addListener((ObservableValue<? extends Boolean> ov, Boolean oldValue, Boolean newValue) -> {
lblK.setText(newValue? "Max K clusters:" : "K clusters:");
});
chkMclust.setSelected(dfltParams.mclust);
if((dfltParams.degree - 1) < maxDegree)
cbReps.getSelectionModel().select(dfltParams.degree - 1);
else
cbReps.getSelectionModel().select(maxDegree - 1);
}
else {
txtFCValue.disableProperty().bind(cbMethods.valueProperty().isEqualTo("edgeR"));
lblFC.disableProperty().bind(cbMethods.valueProperty().isEqualTo("edgeR"));
cbReps.disableProperty().bind(cbMethods.valueProperty().isEqualTo("edgeR"));
lblReplicate.disableProperty().bind(cbMethods.valueProperty().isEqualTo("edgeR"));
for(EnumData rep : Params.lstReps)
cbReps.getItems().add(rep.name);
cbReps.getSelectionModel().select(Params.getRepsListIdx(dfltParams.replicates.name()));
txtR2Cutoff.setVisible(false);
lblR2Cutoff.setVisible(false);
lblR2Default.setVisible(false);
lblK.setVisible(false);
txtK.setVisible(false);
chkMclust.setVisible(false);
}
if(dfltParams.dataType.equals(DataType.PROTEIN))
rbProteins.setSelected(true);
else if(dfltParams.dataType.equals(DataType.TRANS))
rbTrans.setSelected(true);
else
rbGenes.setSelected(true);
if(project.data.normalized){
cbMethods.getSelectionModel().select(Params.getMethodDataNormalizedCboIdx(dfltParams.method.name(), expType));
}else{
cbMethods.getSelectionModel().select(Params.getMethodCboIdx(dfltParams.method.name(), expType));
}
txtSigValue.setText("" + dfltParams.sigValue);
dialog.setOnCloseRequest((DialogEvent event) -> {
if(dialog.getResult() != null && dialog.getResult().containsKey("ERRMSG")) {
showDlgMsg((String)dialog.getResult().get("ERRMSG"));
dialog.setResult(null);
event.consume();
}
});
dialog.setResultConverter((ButtonType b) -> {
HashMap<String, String> params = null;
if (b.getButtonData() == ButtonBar.ButtonData.OK_DONE)
params = validate(dialog);
return params;
});
Optional<HashMap> result = dialog.showAndWait();
if(result.isPresent())
return new Params(result.get(), project);
}
return null;
}
private HashMap<String, String> validate(Dialog dialog) {
HashMap<String, String> results = new HashMap<>();
String errmsg = "";
// IF DATA NOT RAW WE DONT SHWO EDGER METHOD
if(project.data.normalized){
int midx = Params.getMethodDataNormalizedListIdxByName((String) cbMethods.getSelectionModel().getSelectedItem(), expType);
results.put(Params.METHOD_PARAM, Params.lstMethodsDataNormalized.get(midx).id);
}else{
int midx = Params.getMethodListIdxByName((String) cbMethods.getSelectionModel().getSelectedItem(), expType);
results.put(Params.METHOD_PARAM, Params.lstMethods.get(midx).id);
}
if(project.data.isTimeCourseExpType()) {
// check for a valid R2 cutoff value
String txt = txtR2Cutoff.getText().trim();
if(txt.length() > 0) {
try {
Double val = Double.parseDouble(txt);
if(val >= Params.MIN_R2CUTOFF && val <= Params.MAX_R2CUTOFF) {
results.put(Params.R2CUTOFF_PARAM, txt);
}
else
errmsg = "Invalid R^2 cutoff value entered (" + Params.MIN_R2CUTOFF + " to " + Params.MAX_R2CUTOFF + " allowed).";
} catch(Exception e) {
txtR2Cutoff.requestFocus();
errmsg = "Invalid R^2 cutoff value number entered.";
}
}
else
errmsg = "You must enter the R^2 cutoff value.";
if(errmsg.isEmpty()) {
// check for a valid K value
txt = txtK.getText().trim();
if(txt.length() > 0) {
try {
Double val = Double.parseDouble(txt);
if(val >= Params.MIN_K && val <= Params.MAX_K) {
results.put(Params.K_PARAM, txt);
}
else
errmsg = "Invalid K clusters value entered (" + Params.MIN_K + " to " + Params.MAX_K + " allowed).";
} catch(Exception e) {
errmsg = "Invalid K clusters value number entered.";
}
}
else
errmsg = "You must enter the K clusters value.";
if(errmsg.isEmpty()) {
results.put(Params.MCLUST_PARAM, chkMclust.isSelected()? "true" : "false");
results.put(Params.DEGREE_PARAM, (String) cbReps.getSelectionModel().getSelectedItem());
}
else
txtK.requestFocus();
}
else
txtR2Cutoff.requestFocus();
}
else {
int ridx = cbReps.getSelectionModel().getSelectedIndex();
results.put(Params.REPS_PARAM, Params.lstReps.get(ridx).id);
}
if(errmsg.isEmpty()) {
// get the data type
if(rbTrans.isSelected())
results.put(Params.DATATYPE_PARAM, DataType.TRANS.name());
else if(rbProteins.isSelected())
results.put(Params.DATATYPE_PARAM, DataType.PROTEIN.name());
else
results.put(Params.DATATYPE_PARAM, DataType.GENE.name());
// check for a valid threshold value
String txt = txtSigValue.getText().trim();
if(txt.length() > 0) {
try {
Double val = Double.parseDouble(txt);
if(val >= Params.MIN_PVAL_THRESHOLD && val <= Params.MAX_PVAL_THRESHOLD) {
results.put(Params.SIGVAL_PARAM, txt);
}
else
errmsg = "Invalid significance value entered (" + Params.MIN_PVAL_THRESHOLD + " to " + Params.MAX_PVAL_THRESHOLD + " allowed).";
} catch(Exception e) {
errmsg = "Invalid significance value number entered.";
}
}
else
errmsg = "You must enter a significance value.";
if(!errmsg.isEmpty()) {
txtSigValue.requestFocus();
results.put("ERRMSG", errmsg);
}
// check for a valid FC value
txt = txtFCValue.getText().trim();
if(txt.length() > 0) {
try {
Double val = Double.parseDouble(txt);
if(val >= Params.MIN_PVAL_THRESHOLD && val <= Params.MAX_PVAL_FC) {
results.put(Params.FC_PARAM, txt);
}
else
errmsg = "Invalid fold change value entered (" + Params.MIN_PVAL_THRESHOLD + " to " + Params.MAX_PVAL_FC + " allowed).";
} catch(Exception e) {
errmsg = "Invalid fold change value number entered.";
}
}
else
errmsg = "You must enter a fold change value.";
if(!errmsg.isEmpty()) {
txtSigValue.requestFocus();
results.put("ERRMSG", errmsg);
}
}
else
results.put("ERRMSG", errmsg);
return results;
}
//
// Data Classes
//
public static class Params extends DlgParams {
public static final int MIN_K = 1;
public static final int MAX_K = 30;
public static int MAX_DEAFULT_DEGREE = 3;
// if case-control experiment
public static final String REPS_PARAM = "replicates";
// if time course experiment
public static final String DEGREE_PARAM = "degree";
public static final String R2CUTOFF_PARAM = "R2cutoff";
public static final String K_PARAM = "k";
public static final String MCLUST_PARAM = "mclust";
// shared by all
public static final String METHOD_PARAM = "method";
public static final String DATATYPE_PARAM = "dataType";
public static final String SIGVAL_PARAM = "sigval";
public static final String FC_PARAM = "FC";
private static final DataType dfltDataType = DataType.GENE;
private static final Replicates dfltReplicates = Replicates.BIOLOGICAL;
private static final double dfltSigValue = 0.05;
private static final double dfltFCValue = 2;
private static final double dfltR2Cutoff = 0.7;
private static final int dfltK = 9;
private static final boolean dfltMclust = false;
Method dfltMethod = null;
public static enum Method {
// case-control
EDGER, NOISEQ,
// time course
MASIGPRO
}
private static final List<MethodData> lstMethodsDataNormalized = Arrays.asList(
new MethodData(Method.EDGER.name(), "edgeR", DataApp.ExperimentType.Two_Group_Comparison),
new MethodData(Method.NOISEQ.name(), "NOISeq", DataApp.ExperimentType.Two_Group_Comparison),
new MethodData(Method.MASIGPRO.name(), "maSigPro", DataApp.ExperimentType.Time_Course_Multiple),
new MethodData(Method.MASIGPRO.name(), "maSigPro", DataApp.ExperimentType.Time_Course_Single)
);
private static final List<MethodData> lstMethods = Arrays.asList(
new MethodData(Method.NOISEQ.name(), "NOISeq", DataApp.ExperimentType.Two_Group_Comparison),
new MethodData(Method.MASIGPRO.name(), "maSigPro", DataApp.ExperimentType.Time_Course_Multiple),
new MethodData(Method.MASIGPRO.name(), "maSigPro", DataApp.ExperimentType.Time_Course_Single)
);
public static enum Replicates {
NONE, TECHNICAL, BIOLOGICAL
}
private static final List<EnumData> lstReps = Arrays.asList(
new EnumData(Replicates.BIOLOGICAL.name(), "Biological"),
new EnumData(Replicates.TECHNICAL.name(), "Technical")
);
Method method;
DataType dataType;
Replicates replicates;
int comparison, degree, k;
double sigValue, R2Cutoff, FCValue;
boolean mclust;
DataApp.ExperimentType expType;
public Params(Project project) {
expType = project.data.getExperimentType();
dfltMethod = expType.equals(DataApp.ExperimentType.Two_Group_Comparison)? DlgDEAnalysis.Params.Method.NOISEQ : DlgDEAnalysis.Params.Method.MASIGPRO;
this.method = dfltMethod;
this.dataType = dfltDataType;
this.replicates = dfltReplicates;
this.sigValue = dfltSigValue;
this.FCValue = dfltFCValue;
this.degree = Math.min(MAX_DEAFULT_DEGREE, Math.max(1, project.data.getTimePoints() - 1));
this.R2Cutoff = dfltR2Cutoff;
this.k = dfltK;
this.mclust = dfltMclust;
}
public Params(HashMap<String, String> hmParams, Project project) {
expType = project.data.getExperimentType();
int dfltDegree = Math.min(MAX_DEAFULT_DEGREE, Math.max(1, project.data.getTimePoints() - 1));
dfltMethod = expType.equals(DataApp.ExperimentType.Two_Group_Comparison)? DlgDEAnalysis.Params.Method.NOISEQ : DlgDEAnalysis.Params.Method.MASIGPRO;
this.method = hmParams.containsKey(METHOD_PARAM)? Method.valueOf(hmParams.get(METHOD_PARAM)) : dfltMethod;
this.dataType = hmParams.containsKey(DATATYPE_PARAM)? DataType.valueOf(hmParams.get(DATATYPE_PARAM)) : dfltDataType;
this.replicates = hmParams.containsKey(REPS_PARAM)? Replicates.valueOf(hmParams.get(REPS_PARAM)) : dfltReplicates;
this.sigValue = hmParams.containsKey(SIGVAL_PARAM)? Double.parseDouble(hmParams.get(SIGVAL_PARAM)) : dfltSigValue;
this.FCValue = hmParams.containsKey(FC_PARAM)? Double.parseDouble(hmParams.get(FC_PARAM)) : dfltFCValue;
this.degree = hmParams.containsKey(DEGREE_PARAM)? Integer.parseInt(hmParams.get(DEGREE_PARAM)) : dfltDegree;
this.R2Cutoff = hmParams.containsKey(R2CUTOFF_PARAM)? Double.parseDouble(hmParams.get(R2CUTOFF_PARAM)) : dfltR2Cutoff;
this.k = hmParams.containsKey(K_PARAM)? Integer.parseInt(hmParams.get(K_PARAM)) : dfltK;
this.mclust = hmParams.containsKey(MCLUST_PARAM)? Boolean.valueOf(hmParams.get(MCLUST_PARAM).toLowerCase()) : dfltMclust;
}
@Override
public HashMap<String, String> getParams() {
HashMap<String, String> hm = new HashMap<>();
hm.put(METHOD_PARAM, method.name());
hm.put(DATATYPE_PARAM, dataType.name());
hm.put(REPS_PARAM, replicates.name());
hm.put(SIGVAL_PARAM, "" + sigValue);
hm.put(FC_PARAM, "" + FCValue);
hm.put(DEGREE_PARAM, "" + degree);
hm.put(R2CUTOFF_PARAM, "" + R2Cutoff);
hm.put(K_PARAM, "" + k);
hm.put(MCLUST_PARAM, Boolean.toString(mclust));
return hm;
}
//
// Static functions
//
public static Params load(String filepath, Project project) {
HashMap<String, String> params = new HashMap<>();
Utils.loadParams(params, filepath);
return (new Params(params, project));
}
private static int getMethodCboIdx(String id, DataApp.ExperimentType expType) {
int idx = 0;
int size = 0;
for(MethodData ed : lstMethods) {
if(ed.expType.equals(expType))
size++;
}
for(MethodData ed : lstMethods) {
if(ed.expType.equals(expType)) {
if(ed.id.equals(id))
break;
idx++;
}
}
if(idx >= size)
idx = 0;
return idx;
}
private static int getMethodListIdxByName(String name, DataApp.ExperimentType expType) {
int idx = 0;
for(MethodData ed : lstMethods) {
if(ed.expType.equals(expType)) {
if(ed.name.equals(name))
break;
}
idx++;
}
if(idx >= lstMethods.size())
idx = 0;
return idx;
}
private static int getMethodDataNormalizedCboIdx(String id, DataApp.ExperimentType expType) {
int idx = 0;
int size = 0;
for(MethodData ed : lstMethodsDataNormalized) {
if(ed.expType.equals(expType))
size++;
}
for(MethodData ed : lstMethodsDataNormalized) {
if(ed.expType.equals(expType)) {
if(ed.id.equals(id))
break;
idx++;
}
}
if(idx >= size)
idx = 0;
return idx;
}
private static int getMethodDataNormalizedListIdxByName(String name, DataApp.ExperimentType expType) {
int idx = 0;
for(MethodData ed : lstMethodsDataNormalized) {
if(ed.expType.equals(expType)) {
if(ed.name.equals(name))
break;
}
idx++;
}
if(idx >= lstMethodsDataNormalized.size())
idx = 0;
return idx;
}
private static int getRepsListIdx(String id) {
int idx = 0;
for(EnumData ed : lstReps) {
if(ed.id.equals(id))
break;
idx++;
}
if(idx >= lstReps.size())
idx = 0;
return idx;
}
}
protected static class MethodData implements Comparable<MethodData> {
public String id;
public String name;
public DataApp.ExperimentType expType;
public MethodData(String id, String name, DataApp.ExperimentType expType) {
this.id = id;
this.name = name;
this.expType = expType;
}
@Override
public int compareTo(MethodData entry) {
return (id.compareToIgnoreCase(entry.id));
}
}
}