-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_experiments.py
136 lines (114 loc) · 5.8 KB
/
main_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from utils import *
from mvs_gcn import mvs_gcn_plus, mvs_gcn_plus_otf
from layer_wise_gcn import ladies
from node_wise_gcn import graphsage, vrgcn
from subgraph_gcn import clustergcn, graphsaint
import argparse
torch.manual_seed(43)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
"""
Train Configs
"""
parser = argparse.ArgumentParser(
description='Training GCN on Large-scale Graph Datasets')
parser.add_argument('--dataset', type=str, default='reddit',
help='Dataset name: cora/citeseer/pubmed/flickr/reddit/ppi/ppi-large')
parser.add_argument('--nhid', type=int, default=256,
help='Hidden state dimension')
parser.add_argument('--epoch_num', type=int, default=400,
help='Number of Epoch')
parser.add_argument('--pool_num', type=int, default=10,
help='Number of Pool')
parser.add_argument('--batch_num', type=int, default=10,
help='Maximum Batch Number')
parser.add_argument('--batch_size', type=int, default=256,
help='size of output node in a batch')
parser.add_argument('--n_layers', type=int, default=2,
help='Number of GCN layers')
parser.add_argument('--n_stops', type=int, default=200,
help='Stop after number of batches that f1 dont increase')
parser.add_argument('--samp_num', type=int, default=256,
help='Number of sampled nodes per layer (only for ladies & factgcn)')
parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout rate')
parser.add_argument('--cuda', type=int, default=0,
help='Avaiable GPU ID')
parser.add_argument('--is_ratio', type=float, default=0.15,
help='Importance sampling rate')
parser.add_argument('--show_grad_norm', type=int, default=1,
help='Whether show gradient norm 0-False, 1-True')
parser.add_argument('--cluster_bsize', type=int, default=5,
help='how many cluster selected each mini-batch')
args = parser.parse_args()
print(args)
"""
Load Data
"""
if args.cuda != -1:
device = torch.device("cuda:" + str(args.cuda))
else:
device = torch.device("cpu")
adj_matrix, labels, feat_data, train_nodes, valid_nodes, test_nodes = preprocess_data(
args.dataset)
print("Dataset information")
print(adj_matrix.shape, labels.shape, feat_data.shape,
train_nodes.shape, valid_nodes.shape, test_nodes.shape)
if type(feat_data) == sp.lil.lil_matrix:
feat_data = torch.FloatTensor(feat_data.todense()).to(device)
else:
feat_data = torch.FloatTensor(feat_data).to(device)
args.multi_class = True if args.dataset in ['ppi', 'ppi-large', 'yelp', 'amazon'] else False
if args.multi_class:
labels = torch.FloatTensor(labels).to(device)
args.num_classes = labels.shape[1]
else:
labels = torch.LongTensor(labels).to(device)
args.num_classes = labels.max().item()+1
prefix = '{}_{}_{}_{}_{}'.format(args.dataset, args.n_layers, args.batch_size, args.samp_num, args.is_ratio)
if os.path.exists('results/{}.pkl'.format(prefix)):
with open('results/{}.pkl'.format(prefix),'rb') as f:
results = pkl.load(f)
else:
results = dict()
"""
Main
"""
use_concat = True if args.dataset in ['ppi', 'ppi-large', 'yelp', 'amazon'] else False
print('mvs_gcn_plus')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = mvs_gcn_plus(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat, fq=args.batch_num)
results['mvs_gcn_plus'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
# print('mvs_gcn_plus_otf')
# susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = mvs_gcn_plus_otf(
# feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
# results['mvs_gcn_plus_otf'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
print('graphsage')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = graphsage(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
results['graphsage'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
print('vrgcn')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = vrgcn(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
results['vrgcn'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
print('ladies')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = ladies(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
results['ladies'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
print('clustergcn')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = clustergcn(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
results['clustergcn'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
print('graphsaint')
susage, loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all = graphsaint(
feat_data, labels, adj_matrix, train_nodes, valid_nodes, test_nodes, args, device, concat=use_concat)
results['graphsaint'] = [loss_train, loss_test, loss_train_all, f1_score_test, grad_variance_all]
"""
Save Results
"""
with open('results/{}.pkl'.format(prefix),'wb') as f:
pkl.dump(results, f)
# with open('results/{}.txt'.format(prefix),'w') as f:
# for key, values in results.items():
# loss_train, loss_test, loss_train_all, f1, grad_vars = values
# f.write("{} {}\n".format(key, f1))