-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizers.py
247 lines (193 loc) · 8.36 KB
/
optimizers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from utils import *
def calculate_grad_variance(net, feat_data, labels, train_nodes, adjs_full):
net_grads = []
for name, params in net.named_parameters():
# if 'lynorm'in name:
# continue
net_grads.append(params.grad.data)
clone_net = copy.deepcopy(net)
clone_net.zero_grad()
_ = clone_net.calculate_loss_grad(
feat_data, adjs_full, labels, train_nodes)
clone_net_grad = []
for name, params in clone_net.named_parameters():
# if 'lynorm'in name:
# continue
clone_net_grad.append(params.grad.data)
del clone_net
variance = 0.0
for g1, g2 in zip(net_grads, clone_net_grad):
variance += (g1-g2).norm(2) ** 2
variance = torch.sqrt(variance)
return variance
def package_mxl(mxl, device):
return [torch.sparse.FloatTensor(mx[0], mx[1], mx[2]).to(device) for mx in mxl]
"""
Minimal Sampling GCN
"""
def boost_step(net, optimizer, feat_data, labels,
train_nodes, valid_nodes,
adjs_full, train_data, inner_loop_num, device, calculate_grad_vars=False):
"""
Function to updated weights with a SGD backpropagation
args : net, optimizer, train_loader, test_loader, loss function, number of inner epochs, args
return : train_loss, test_loss, grad_norm_lb
"""
net.train()
running_loss = []
iter_num = 0.0
grad_variance = []
# Run over the train_loader
while iter_num < inner_loop_num:
for adjs, input_nodes, output_nodes, probs_nodes, sampled_nodes in train_data:
adjs = package_mxl(adjs, device)
weight = 1.0/torch.FloatTensor(probs_nodes).to(device)
# compute current stochastic gradient
optimizer.zero_grad()
current_loss = net.partial_grad(
feat_data[input_nodes], adjs, labels[output_nodes], weight)
# only for experiment purpose to demonstrate ...
if calculate_grad_vars:
grad_variance.append(calculate_grad_variance(
net, feat_data, labels, train_nodes, adjs_full))
optimizer.step()
# print statistics
running_loss += [current_loss.cpu().detach()]
iter_num += 1.0
# calculate training loss
train_loss = np.mean(running_loss)
return train_loss, running_loss, grad_variance
"""
Minimal Sampling GCN on the fly
"""
def boost_otf_step(net, optimizer, feat_data, labels,
train_nodes, valid_nodes,
adjs_full, train_data, inner_loop_num, device, calculate_grad_vars=False):
"""
Function to updated weights with a SGD backpropagation
args : net, optimizer, train_loader, test_loader, loss function, number of inner epochs, args
return : train_loss, test_loss, grad_norm_lb
"""
net.train()
running_loss = []
iter_num = 0.0
grad_variance = []
# Run over the train_loader
while iter_num < inner_loop_num:
for adjs, input_nodes, output_nodes, probs_nodes, sampled_nodes in train_data:
adjs = package_mxl(adjs, device)
weight = 1.0/torch.FloatTensor(probs_nodes).to(device)
# compute current stochastic gradient
optimizer.zero_grad()
current_loss, current_grad_norm = net.partial_grad_with_norm(
feat_data[input_nodes], adjs, labels[output_nodes], weight)
# only for experiment purpose to demonstrate ...
if calculate_grad_vars:
grad_variance.append(calculate_grad_variance(
net, feat_data, labels, train_nodes, adjs_full))
optimizer.step()
# print statistics
running_loss += [current_loss.cpu().detach()]
iter_num += 1.0
# calculate training loss
train_loss = np.mean(running_loss)
return train_loss, running_loss, grad_variance
def variance_reduced_boost_step(net, optimizer, feat_data, labels,
train_nodes, valid_nodes,
adjs_full, train_data, inner_loop_num, device, wrapper, calculate_grad_vars=False):
"""
Function to updated weights with a SGD backpropagation
args : net, optimizer, train_loader, test_loader, loss function, number of inner epochs, args
return : train_loss, test_loss, grad_norm_lb
"""
net.train()
running_loss = []
iter_num = 0.0
grad_variance = []
# Run over the train_loader
while iter_num < inner_loop_num:
for adjs, adjs_exact, input_nodes, output_nodes, probs_nodes, sampled_nodes, input_exact_nodes in train_data:
adjs = package_mxl(adjs, device)
adjs_exact = package_mxl(adjs_exact, device)
weight = 1.0/torch.FloatTensor(probs_nodes).to(device)
# compute current stochastic gradient
optimizer.zero_grad()
current_loss = wrapper.partial_grad(net, feat_data[input_nodes], adjs, sampled_nodes, feat_data,
adjs_exact, input_exact_nodes, labels[output_nodes], weight)
# only for experiment purpose to demonstrate ...
if calculate_grad_vars:
grad_variance.append(calculate_grad_variance(
net, feat_data, labels, train_nodes, adjs_full))
optimizer.step()
# print statistics
running_loss += [current_loss.cpu().detach()]
iter_num += 1.0
# calculate training loss
train_loss = np.mean(running_loss)
return train_loss, running_loss, grad_variance
"""
GCN
"""
def sgd_step(net, optimizer, feat_data, labels,
train_nodes, valid_nodes,
adjs_full, train_data, inner_loop_num, device, calculate_grad_vars=False):
"""
Function to updated weights with a SGD backpropagation
args : net, optimizer, train_loader, test_loader, loss function, number of inner epochs, args
return : train_loss, test_loss, grad_norm_lb
"""
net.train()
running_loss = []
iter_num = 0.0
grad_variance = []
# Run over the train_loader
while iter_num < inner_loop_num:
for adjs, input_nodes, output_nodes, probs_nodes, sampled_nodes in train_data:
adjs = package_mxl(adjs, device)
# compute current stochastic gradient
optimizer.zero_grad()
current_loss = net.partial_grad(
feat_data[input_nodes], adjs, labels[output_nodes])
# only for experiment purpose to demonstrate ...
if calculate_grad_vars:
grad_variance.append(calculate_grad_variance(
net, feat_data, labels, train_nodes, adjs_full))
optimizer.step()
# print statistics
running_loss += [current_loss.cpu().detach()]
iter_num += 1.0
# calculate training loss
train_loss = np.mean(running_loss)
return train_loss, running_loss, grad_variance
def variance_reduced_step(net, optimizer, feat_data, labels,
train_nodes, valid_nodes,
adjs_full, train_data, inner_loop_num, device, wrapper, calculate_grad_vars=False):
"""
Function to updated weights with a SGD backpropagation
args : net, optimizer, train_loader, test_loader, loss function, number of inner epochs, args
return : train_loss, test_loss, grad_norm_lb
"""
net.train()
running_loss = []
iter_num = 0.0
grad_variance = []
# Run over the train_loader
while iter_num < inner_loop_num:
for adjs, adjs_exact, input_nodes, output_nodes, probs_nodes, sampled_nodes, input_exact_nodes in train_data:
adjs = package_mxl(adjs, device)
adjs_exact = package_mxl(adjs_exact, device)
# compute current stochastic gradient
optimizer.zero_grad()
current_loss = wrapper.partial_grad(net,
feat_data[input_nodes], adjs, sampled_nodes, feat_data, adjs_exact, input_exact_nodes, labels[output_nodes])
# only for experiment purpose to demonstrate ...
if calculate_grad_vars:
grad_variance.append(calculate_grad_variance(
net, feat_data, labels, train_nodes, adjs_full))
optimizer.step()
# print statistics
running_loss += [current_loss.cpu().detach()]
iter_num += 1.0
# calculate training loss
train_loss = np.mean(running_loss)
return train_loss, running_loss, grad_variance