-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpackages.py
18 lines (16 loc) · 935 Bytes
/
packages.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import multiprocessing as mp
from samplers import CalculateThreshold
from optimizers import package_mxl
from samplers import ladies_sampler, vrgcn_sampler, graphsage_sampler, fastgcn_sampler, exact_sampler, subgraph_sampler, cluster_sampler, graphsaint_sampler
import numpy as np
def prepare_data(pool, sampler, process_ids, train_nodes, train_nodes_p, samp_num_list, num_nodes, adj_matrix, depth, is_ratio=1.0):
num_train_nodes = len(train_nodes)
jobs = []
for p_id in process_ids:
sample_mask = np.random.uniform(0, 1, num_train_nodes)<= train_nodes_p
probs_nodes = train_nodes_p[sample_mask] * len(train_nodes) * is_ratio
batch_nodes = train_nodes[sample_mask]
p = pool.apply_async(sampler, args=(np.random.randint(2**32 - 1), batch_nodes, probs_nodes,
samp_num_list, num_nodes, adj_matrix, depth))
jobs.append(p)
return jobs