-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmfr.py
executable file
·265 lines (224 loc) · 8.67 KB
/
mfr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# This script is to generate mathched filter response with both Gaussian function and
# first-order derivatie of Gaussian function.
# The input files are original color image and its mark image. The out put files are
# matched filter response with Gaussian filter (grayscale image, H+name.tiff) and the image
# threshold with matched filter response with first-order derivatie of Gaussian filter (binary
# image out+name.tiff).
# There are 4 parameters to be adjust, L: the length of the neighborhood along the y-axis,
# sigma: the standard deviation of Gaussian function, w: the kernel size of the low-pass
# filter before compute MFR-FDoG, c: threshold coefficient.
import numpy as np
import cv2
from math import exp, pi, sqrt
from numbapro import vectorize
import sys
class MFR:
'''
MFR class requests L, sigme, w, c to inicialize.
This class is used for generate filter of Gaussian (gaussian_matched_filter_kernel) and
first-order derivative of Gaussian (fdog_filter_kernel)and the filter bank of the previous
filters (createMatchedFilterBank). applyFilters function used for generate the matched filter
response of the given filter.
'''
def __init__(self, L, sigma, w, c):
if L == 0:
L = 1
if sigma == 0:
sigma = 1
if w == 0:
w = 1
self.L = L
self.sigma = sigma
self.w = w
self.c = c
def _filter_kernel_mf_fdog(self, t = 3, mf = True):
dim_y = int(self.L)
dim_x = int(2 * t * self.sigma)
if dim_x == 0:
dim_x = 1
if dim_y == 0:
dim_y = 1
arr = np.zeros((dim_y, dim_x), 'f')
ctr_x = dim_x / 2
ctr_y = int(dim_y / 2.)
# an un-natural way to set elements of the array
# to their x coordinate.
# x's are actually columns, so the first dimension of the iterator is used
it = np.nditer(arr, flags=['multi_index'])
while not it.finished:
arr[it.multi_index] = it.multi_index[1] - ctr_x
it.iternext()
two_sigma_sq = 2 * self.sigma * self.sigma
if two_sigma_sq == 0:
two_sigma_sq = 1
div = sqrt(2 * pi) * self.sigma
if div == 0:
div = 1.
sqrt_w_pi_sigma = 1. / div
if not mf:
div = self.sigma ** 2
if div == 0:
div = 1.
sqrt_w_pi_sigma = sqrt_w_pi_sigma / div
@vectorize(['float32(float32)'], target='cpu')
def k_fun(x):
return sqrt_w_pi_sigma * exp(-x * x / two_sigma_sq)
@vectorize(['float32(float32)'], target='cpu')
def k_fun_derivative(x):
return -x * sqrt_w_pi_sigma * exp(-x * x / two_sigma_sq)
if mf:
kernel = k_fun(arr)
kernel = kernel - np.sum(kernel)/(dim_x*dim_y)
else:
kernel = k_fun_derivative(arr)
# return the "convolution" kernel for filter2D
return kernel
def fdog_filter_kernel(self, t = 3):
'''
K = - (x/(sqrt(2 * pi) * sigma ^3)) * exp(-x^2/2sigma^2), |y| <= L/2, |x| < s * t
'''
return self._filter_kernel_mf_fdog(t, False)
def gaussian_matched_filter_kernel(self, t = 3):
'''
K = 1/(sqrt(2 * pi) * sigma ) * exp(-x^2/2sigma^2), |y| <= L/2, |x| < s * t
'''
return self._filter_kernel_mf_fdog(t, True)
def createMatchedFilterBank(self, K, n = 12):
'''
Given a kernel, create matched filter bank
'''
rotate = 180 / n
center = (K.shape[1] / 2, K.shape[0] / 2)
cur_rot = 0
kernels = [K]
for i in range(1, n):
cur_rot += rotate
r_mat = cv2.getRotationMatrix2D(center, cur_rot, 1)
k = cv2.warpAffine(K, r_mat, (K.shape[1], K.shape[0]))
if np.count_nonzero(k):
mean = np.sum(k)/np.count_nonzero(k)
else:
mean = 0
for y in range(len(k)):
for x in range(len(k[0])):
if k[y][x]:
k[y][x] -= mean
kernels.append(k)
return kernels
#Applying the filter bank
def applyFilters(self, im, kernels):
'''
Given a filter bank, apply them and record maximum response
'''
images = np.array([cv2.filter2D(im, -1, k) for k in kernels])
return np.max(images, 0)
#######Parameters for DRIVE##################################
# L = 5 # the length of the neighborhood along the y-axis to smooth noise
# sigma = 1
# w = 31 # kernel size
# c = 1 # the gain of threshold
#######Parameters for STARE##################################
L = 9 # the length of the neighborhood along the y-axis to smooth noise
sigma = 1.5
w = 31 # kernel size
c = 1.5 # the gain of threshold
def inbounds(shape, indices):
'''
Test if the given coordinates inside the given image.
The first input parameter is the shape of image (height, weight) and the
second parameter is the coordinates to be tested (y, x)
The function returns True if the coordinates inside the image and vice versa.
'''
assert len(shape) == len(indices)
for i, ind in enumerate(indices):
if ind < 0 or ind >= shape[i]:
return False
return True
def setlable(img, labimg, x, y, label, size):
'''
This fucntion is used for label image.
The first two input images are the image to be labeled and an output image with
labeled region. "x", "y" are the coordinate to be tested, "label" is the ID
of a region and size is used to limit maximum size of a region.
'''
if img[y][x] and not labimg[y][x]:
labimg[y][x] = label
size += 1
if size > 500:
return False
if inbounds(img.shape, (y, x+1)):
setlable(img, labimg, x+1, y,label, size)
if inbounds(img.shape, (y+1, x)):
setlable(img, labimg, x, y+1,label, size)
if inbounds(img.shape, (y, x-1)):
setlable(img, labimg, x-1, y,label, size)
if inbounds(img.shape, (y-1, x)):
setlable(img, labimg, x, y-1,label, size)
if inbounds(img.shape, (y+1, x+1)):
setlable(img, labimg, x+1, y+1,label, size)
if inbounds(img.shape, (y+1, x-1)):
setlable(img, labimg, x-1, y+1,label, size)
if inbounds(img.shape, (y-1, x+1)):
setlable(img, labimg, x+1, y-1,label, size)
if inbounds(img.shape, (y-1, x-1)):
setlable(img, labimg, x-1, y-1,label, size)
# im0 is the original image and mask is the mask image of the given image
im0 = cv2.imread(sys.argv[1])
mask = cv2.imread(sys.argv[2])
# we split the orignal image into 3 channels, b, g, r and only use green
# channel. Also, we convert the mask image into a grayscale image.
b,g,r = cv2.split(im0)
im1 = g
h, w = im1.shape[:2]
im1 = 255 - im1
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# initialize a variable of the class of MFR.
matched = MFR(L, sigma, w, c)
# generate Gaussian filter and first-order derivative of Gaussian filter.
gf = matched.gaussian_matched_filter_kernel()
fdog = matched.fdog_filter_kernel()
# generate filter bank
bank_gf = matched.createMatchedFilterBank(gf, 12)
bank_fdog = matched.createMatchedFilterBank(fdog, 12)
# obtain matched filter response. H is the MFR-G and D is MFR-FDoG
H = matched.applyFilters(im1, bank_gf)
D = matched.applyFilters(im1, bank_fdog)
# compute the threshold value using MFR-FDoG
kernel_size = 31
kernel = np.ones((kernel_size,kernel_size),np.float32)/(kernel_size*kernel_size)
dm = np.zeros(D.shape,np.float32)
DD = np.array(D, dtype='f')
dm = cv2.filter2D(DD,-1,kernel)
dmn = cv2.normalize(dm, 0, 1, cv2.NORM_MINMAX)
uH = cv2.mean(H)
Tc = matched.c * uH[0]
T = (1+dmn) * Tc
# threshold the MFR-G with previous threhshold value.
out = np.zeros(H.shape)
out[H > T] = 255
# using the mask image to truncate the value outside the reina.
laplacian = cv2.Laplacian(mask, cv2.CV_64F)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(7,7))
laplacian = cv2.dilate(laplacian,kernel,iterations = 4)
H[(mask == 0) + (laplacian != 0)] = 0
out[(mask == 0) + (laplacian != 0)] = 0
# get rid of the segment less than 10 pixel
lab = 1
label = np.zeros(out.shape)
for y in range(h):
for x in range(w):
if not label[y][x] and out[y][x]:
size = 0
setlable(out, label, x, y, lab, size)
lab += 1
num = np.zeros(lab)
for y in range(h):
for x in range(w):
num[int(label[y][x]-1)] += 1
for y in range(h):
for x in range(w):
if num[int(label[y][x]-1)] <= 10:
out[y][x] = 0
# generate the output images.
cv2.imwrite("Final_" + sys.argv[1], out)
cv2.imwrite("MF_" + sys.argv[1], H)