-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuliding_temoperature_control.py
197 lines (183 loc) · 7.15 KB
/
buliding_temoperature_control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import copy
from STLnested_tool import Phi
from STLnested_tool import Probability_Phi
from STLnested_tool import Probability
# 给两个列表集合取交集,考虑R以及\运算
def jiao(region1, region2):
# 用来给两个集合取交集,考虑全集R,R的存法是region = [['R']]
if region1[0] == 'R':
region = region2
elif region2[0] == 'R':
region = region1
else: # 这种情况是两个都不是R,正常取交集即可
if region1[0] == 'not':
if region2[0] == 'not':
region = ['not', list(set(region1[1]) | set(region2[1]))]
else:
region = [list(set(region2[0]) - set(region1[1]))]
elif region2[0] == 'not': # 这时候region1肯定不是not了
region = [list(set(region1[0]) - set(region2[1]))]
else: # 俩都不是not不是R,正常取交集
# print(region1)
# print(region2)
region = [list(set(region1[0]) & set(region2[0]))]
return region
# 给两个列表取并集,考虑R以及\运算
def bing(region1, region2):
# 用来给两个集合取并集,考虑全集R,R的存法是region = ['R'] 存了一个字符R
if region1[0] == 'R':
region = region1
elif region2[0] == 'R':
region = region2
else: # 这种情况是两个都不是R,正常取并集即可
if region1[0] == 'not':
if region2[0] == 'not': # 都是not
region = ['not', list(set(region1[1]) & set(region2[1]))]
else: # 1是not,2不是
region = ['not', list(set(region1[1]) - set(region2[0]))]
elif region2[0] == 'not': # 这时候region1肯定不是not了
region = [list(set(region2[1]) - set(region1[0]))]
else: # 俩都不是not不是R,正常取并集
# print(region1)
# print(region2)
region = [list(set(region1[0]) | set(region2[0]))]
return region
class Feasible_Set():
# 用来存储X_k^I
def __init__(self, k, probability_phi, X):
self.k = k
self.I = probability_phi
self.X = X
# 重写print
def __repr__(self):
if self.X == ['R']:
prt = f"{self.X}"
else:
low = min(self.X[0])
high = max(self.X[0])
prt = f"[{low}, {high}]"
# if self.X == ['R']:
# prt = f"{self.X}"
# else:
# self.X[0].sort()
# prt = f"{self.X[0]}"
return prt
def fanwei(low, high):
# 将连续的范围转换成离散的取值列表,目前的精度为0.1
x = round(low,1)
list = []
while(x <= high):
list.append(x)
x = x + 0.1
x = round(x, 1)
return list
def temperature_dynamic(x_k,u_k):
# 建筑温度变化的数学模型
t_s = 1
a_e = 0.06
a_H = 0.08
T_h = 55 # 加热温度
T_e = 0 # 外界环境温度
x_k1 = x_k + t_s * (a_e*(T_e - x_k)+a_H*(T_h-x_k)*u_k)
return x_k1
def temperature_dynamic_backward(x_k1,u_k):
# 建筑温度变化的数学模型的逆计算
t_s = 1
a_e = 0.06
a_H = 0.08
T_h = 55 # 加热温度
T_e = 0 # 外界环境温度
x_k = (x_k1-t_s*a_e*T_e-t_s*a_H*T_h*u_k)/(1-t_s*a_e-t_s*a_H*u_k)
return x_k
def one_step_set_temperature(fanwei_k):
low_k = fanwei_k[0]
high_k = fanwei_k[-1]
low_k1 = temperature_dynamic(low_k, 0)
high_k1 = temperature_dynamic(high_k, 1)
fanwei_k1 = fanwei(low_k1,high_k1)
return fanwei_k1
def one_step_set_temperature_backward(fanwei_k1):
# low_k1 = fanwei_k1[0]
# high_k1 = fanwei_k1[-1]
low_k1 = min(fanwei_k1)
high_k1 = max(fanwei_k1)
low_k = temperature_dynamic_backward(low_k1, 1)
high_k = temperature_dynamic_backward(high_k1, 0)
# print(low_k1,high_k1)
# print(low_k, high_k)
fanwei_k = fanwei(low_k, high_k)
return [fanwei_k]
def feasible_set(task):
end = task.effective_horizon()[1]
feasible_set_list = []
for i in range(end+2):
feasible_set_list += [[]]
I_every_k = task.potential_set()
I_every_k_phi = []
for i in range(end+2):
I_every_k_phi.append([])
for i in range(end+2):
for I_k in I_every_k[i]:
p_phi = Probability_Phi(None, None, I_k)
I_every_k_phi[i] += [p_phi]
# if p_phi.sat == False:
# I_every_k_phi[i] += [p_phi]
print(I_every_k_phi)
# print(I_every_k[end+1])
for I_T1 in I_every_k_phi[end+1]:
# print(I_T1)
feasible_set_list[end+1] += [Feasible_Set(end+1, I_T1, ['R'])]
k = end
while(k>=0):
print(k)
print(I_every_k_phi[k])
for I_k in I_every_k_phi[k]:
# 已经T了就别算了,反正是R
if I_k.sat == True:
continue
# 算某个I的X_k_I,需要算其所有后继集
X_k_I_list = []
linshi_list = []
for I_k1 in I_every_k_phi[k+1]:
# print(I_k)
# print(I_k1)
if task.is_successor_phi(I_k, I_k1):
consistent_region = task.consistent_region(I_k.P_list, I_k1.P_list)
for X_k1 in feasible_set_list[k+1]:
if X_k1.I.is_equal(I_k1):
if X_k1.X != ['R']:
# print(f"here{X_k1.X}")
one_step_set = one_step_set_temperature_backward(X_k1.X[0])
else:
one_step_set = ['R']
# print(f"交:{one_step_set}和{consistent_region}")
# print(f"结果是:{jiao(consistent_region, one_step_set)}")
linshi_list += [jiao(consistent_region, one_step_set)]
# print(f"所有后继集:{linshi_list}")
X_k_I_list = linshi_list[0]
for list1 in linshi_list:
X_k_I_list = bing(X_k_I_list,list1)
# print(X_k_I_list)
if X_k_I_list != [[]]:
feasible_set_list[k] += [Feasible_Set(k, I_k, X_k_I_list)]
k = k-1
return feasible_set_list
if __name__ == "__main__":
# print(temperature_dynamic(20,0))
# print(fanwei(10,15))
# print(one_step_set_temperature(fanwei(10,15)))
o1 = Phi([0], [5], ['G'], [fanwei(20,25)])
# print(o1)
# task = Phi([0,13],[5,15], ['U','G'], [o1,fanwei(27,30)], [fanwei(0,50),None]) # 在5分钟里到达[20,25]且到达后再维持5分钟
# task = Phi([0], [5], ['U'], [o1], [fanwei(0, 50)]) # 在5分钟里到达[20,25]且到达后再维持5分钟
task = Phi([13], [15], ['G'], [fanwei(27, 30)]) # 在5分钟里到达[20,25]且到达后再维持5分钟
print(task)
print(task.effective_horizon())
I_every_k = task.potential_set()
print(I_every_k)
feasible_set_task = feasible_set(task)
for i in range(16):
print(f"k={i}")
print(f"{len(I_every_k[i])}, {len(feasible_set_task[i])}")
print(I_every_k[i])
print(feasible_set_task[i])