-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr2_convertDataSetNERF_STFT.m
178 lines (101 loc) · 5.17 KB
/
r2_convertDataSetNERF_STFT.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
%% Init
clear
path(pathdef);
addpath( genpath( 'Source' ) )
rng(42)
%% Load
load( 'Data\HRTF_Typical_Bat');
M = matfile('DataCalculated\Simulations/DataSonoNerf_IRs_UALogo_public.mat');
fnSave = 'DataCalculated/PreparedData/DataSonoNERF_Training_UALogo_test.mat';
%% Settings
freqStart = 10e3;
freqEnd = 100e3;
rangeStart = 0.15;
rangeEnd = 0.75;
%% Pre-extractions
dataStorageMatrix = {};
stftLength = 64;
stftOverlap = 60;
stftNFFT = 512;
sigEmit =[0 1 0 ];
dbCut = -10;
outputOfMEval = evalc('M');
pattern = 'dataStorageMatrix:\s+\[\d+x(\d+)\s+cell\]';
matches = regexp(outputOfMEval, pattern, 'tokens');
if ~isempty(matches)
numMeasurements = str2double(matches{1}{1});
else
numMeasurements = -1;
error( 'File for the data is not found' )
end
PB = ProgressBar( numMeasurements, 'Calculating data', 'cli');
parfor cntMeasurement = 1 : numMeasurements
currentData = M.dataStorageMatrix(1,cntMeasurement);
currentData = currentData{1};
irSimulated = currentData.impulseResponse;
irFilteredLeft = zeros( size( irSimulated ) );
irFilteredRight = zeros( size( irSimulated ) );
for cntChannel = 1 : size( irSimulated, 2 )
curFIRLeft = array_struct.left_struct.FIR_coeffs( cntChannel, : );
curFIRRight = array_struct.right_struct.FIR_coeffs( cntChannel, : );
irFilteredLeft( :, cntChannel ) = filter( curFIRLeft, 1, conv( irSimulated( :, cntChannel ), sigEmit, 'same' ) );
irFilteredRight( :, cntChannel ) = filter( curFIRRight, 1, conv( irSimulated( :, cntChannel), sigEmit, 'same' ) );
end
irOutputLeft = sum( irFilteredLeft, 2 );
irOutputRight = sum( irFilteredRight, 2 );
[leftSTFT, freqsSTFT, timeSTFT ] = spectrogram( irOutputLeft, stftLength,stftOverlap,stftNFFT,1e6, 'yaxis');
[rightSTFT, ~, ~] = spectrogram( irOutputRight, stftLength,stftOverlap,stftNFFT,1e6, 'yaxis');
rangeSTFT = timeSTFT * 343 / 2;
idxFreqStart = get_vec_idx( freqStart, freqsSTFT );
idxFreqEnd = get_vec_idx( freqEnd, freqsSTFT );
idxRangeStart = get_vec_idx( rangeStart, rangeSTFT );
idxRangeEnd = get_vec_idx( rangeEnd, rangeSTFT );
sensorPosition = currentData.sensorInfo.position(:);
sensorOrientation = currentData.sensorInfo.orientation(:);
binauralSTFTSlice = abs( [ leftSTFT( idxFreqStart:idxFreqEnd, idxRangeStart:idxRangeEnd ) ; rightSTFT( idxFreqStart:idxFreqEnd, idxRangeStart:idxRangeEnd ) ] );
binauralSTFTSlice = 20*log10(binauralSTFTSlice + 10^(dbCut / 20 ) ) - dbCut;
binauralSTFTSlice( binauralSTFTSlice < 0 ) = 0;
rangeSlice = rangeSTFT( idxRangeStart : idxRangeEnd );
freqSlice = [ freqsSTFT(idxFreqStart:idxFreqEnd) ; freqsSTFT(idxFreqStart:idxFreqEnd) ];
figure(123); imagesc( rangeSlice, freqSlice/1000, binauralSTFTSlice)
colorbar
curNumSamples = length( rangeSlice );
sensorPositionRepped = repmat( sensorPosition, 1, curNumSamples );
sensorOrientationRepped = repmat( sensorOrientation, 1, curNumSamples );
storageStruct = struct();
storageStruct.binauralSTFTSlice = binauralSTFTSlice;
storageStruct.rangeSlice = rangeSlice;
storageStruct.sensorPositionRepped = sensorPositionRepped;
storageStruct.sensorOrientationRepped = sensorOrientationRepped;
storageStruct.frequencies = [ freqsSTFT(idxFreqStart:idxFreqEnd) ; freqsSTFT(idxFreqStart:idxFreqEnd) ];
dataStorageMatrix{ cntMeasurement } = storageStruct;
count( PB );
end
%% Combination storage:
testStruct = dataStorageMatrix{1};
numSamplesTotal = length( testStruct.sensorOrientationRepped ) * length( dataStorageMatrix );
numFrequencies = size( testStruct.binauralSTFTSlice, 1 );
numSamplesSingle = length( testStruct.sensorOrientationRepped );
inputStacked = nan( numSamplesTotal, 7 );
spectraStacked = nan( numSamplesTotal, numFrequencies );
dataChunkMatrix = {};
for cntMeasurement = 1 : numMeasurements
curStruct = dataStorageMatrix{cntMeasurement};
curInputs = [ curStruct.sensorPositionRepped ; curStruct.sensorOrientationRepped ; curStruct.rangeSlice ];
curOutputs = curStruct.binauralSTFTSlice;
curIdxStart = ( cntMeasurement - 1 ) * numSamplesSingle + 1;
curIdxEnd = curIdxStart + numSamplesSingle - 1;
inputStacked( curIdxStart : curIdxEnd, : ) = curInputs';
spectraStacked( curIdxStart : curIdxEnd, : ) = curOutputs';
curDataChunk = struct();
curDataChunk.inputData = curInputs;
curDataChunk.outputData = curOutputs;
dataChunkMatrix{cntMeasurement} = curDataChunk;
end
%% Now put it in variables:
structSonoNERFData = struct();
structSonoNERFData.inputs = inputStacked;
structSonoNERFData.outputs = spectraStacked;
structSonoNERFData.frequencies = curStruct.frequencies;
structSonoNERFData.dataChunkMatrix = dataChunkMatrix;
save( fnSave, 'structSonoNERFData' )