-
Notifications
You must be signed in to change notification settings - Fork 1
/
secp256k1.py
173 lines (137 loc) · 4.94 KB
/
secp256k1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import hashlib
import hmac
import sys
from typing import (
Any,
cast,
Tuple,
TYPE_CHECKING,
)
if TYPE_CHECKING:
from py_ecc.typing import ( # noqa: F401
PlainPoint2D,
PlainPoint3D,
)
if sys.version_info.major == 2:
safe_ord = ord
else:
def safe_ord(value: Any) -> int: # type: ignore
if isinstance(value, int):
return value
else:
return ord(value)
# Elliptic curve parameters (secp256k1)
P = 2**256 - 2**32 - 977
N = 115792089237316195423570985008687907852837564279074904382605163141518161494337
A = 0
B = 7
Gx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
Gy = 32670510020758816978083085130507043184471273380659243275938904335757337482424
G = cast("PlainPoint2D", (Gx, Gy))
def bytes_to_int(x: bytes) -> int:
o = 0
for b in x:
o = (o << 8) + safe_ord(b) # type: ignore
return o
# Extended Euclidean Algorithm
def inv(a: int, n: int) -> int:
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % n
def to_jacobian(p: "PlainPoint2D") -> "PlainPoint3D":
o = (p[0], p[1], 1)
return cast("PlainPoint3D", o)
def jacobian_double(p: "PlainPoint3D") -> "PlainPoint3D":
if not p[1]:
return cast("PlainPoint3D", (0, 0, 0))
ysq = (p[1] ** 2) % P
S = (4 * p[0] * ysq) % P
M = (3 * p[0] ** 2 + A * p[2] ** 4) % P
nx = (M**2 - 2 * S) % P
ny = (M * (S - nx) - 8 * ysq ** 2) % P
nz = (2 * p[1] * p[2]) % P
return cast("PlainPoint3D", (nx, ny, nz))
def jacobian_add(p: "PlainPoint3D", q: "PlainPoint3D") -> "PlainPoint3D":
if not p[1]:
return q
if not q[1]:
return p
U1 = (p[0] * q[2] ** 2) % P
U2 = (q[0] * p[2] ** 2) % P
S1 = (p[1] * q[2] ** 3) % P
S2 = (q[1] * p[2] ** 3) % P
if U1 == U2:
if S1 != S2:
return cast("PlainPoint3D", (0, 0, 1))
return jacobian_double(p)
H = U2 - U1
R = S2 - S1
H2 = (H * H) % P
H3 = (H * H2) % P
U1H2 = (U1 * H2) % P
nx = (R ** 2 - H3 - 2 * U1H2) % P
ny = (R * (U1H2 - nx) - S1 * H3) % P
nz = (H * p[2] * q[2]) % P
return cast("PlainPoint3D", (nx, ny, nz))
def from_jacobian(p: "PlainPoint3D") -> "PlainPoint2D":
z = inv(p[2], P)
return cast("PlainPoint2D", ((p[0] * z**2) % P, (p[1] * z**3) % P))
def jacobian_multiply(a: "PlainPoint3D", n: int) -> "PlainPoint3D": # type: ignore
if a[1] == 0 or n == 0:
return cast("PlainPoint3D", (0, 0, 1))
if n == 1:
return a
if n < 0 or n >= N:
return jacobian_multiply(a, n % N)
if (n % 2) == 0:
return jacobian_double(jacobian_multiply(a, n // 2))
if (n % 2) == 1:
return jacobian_add(jacobian_double(jacobian_multiply(a, n // 2)), a)
def multiply(a: "PlainPoint2D", n: int) -> "PlainPoint2D":
return from_jacobian(jacobian_multiply(to_jacobian(a), n))
def add(a: "PlainPoint2D", b: "PlainPoint2D") -> "PlainPoint2D":
return from_jacobian(jacobian_add(to_jacobian(a), to_jacobian(b)))
# bytes32
def privtopub(privkey: bytes) -> "PlainPoint2D":
return multiply(G, bytes_to_int(privkey))
def deterministic_generate_k(msghash: bytes, priv: bytes) -> int:
v = b'\x01' * 32
k = b'\x00' * 32
k = hmac.new(k, v + b'\x00' + priv + msghash, hashlib.sha256).digest()
v = hmac.new(k, v, hashlib.sha256).digest()
k = hmac.new(k, v + b'\x01' + priv + msghash, hashlib.sha256).digest()
v = hmac.new(k, v, hashlib.sha256).digest()
return bytes_to_int(hmac.new(k, v, hashlib.sha256).digest())
# bytes32, bytes32 -> v, r, s (as numbers)
def ecdsa_raw_sign(msghash: bytes, priv: bytes) -> Tuple[int, int, int]:
z = bytes_to_int(msghash)
k = deterministic_generate_k(msghash, priv)
r, y = multiply(G, k)
s = inv(k, N) * (z + r * bytes_to_int(priv)) % N
v, r, s = 27 + ((y % 2) ^ (0 if s * 2 < N else 1)), r, s if s * 2 < N else N - s
return v, r, s
def ecdsa_raw_recover(msghash: bytes, vrs: Tuple[int, int, int]) -> "PlainPoint2D":
v, r, s = vrs
if not (27 <= v <= 34):
raise ValueError("%d must in range 27-31" % v)
x = r
xcubedaxb = (x * x * x + A * x + B) % P
beta = pow(xcubedaxb, (P + 1) // 4, P)
y = beta if v % 2 ^ beta % 2 else (P - beta)
# If xcubedaxb is not a quadratic residue, then r cannot be the x coord
# for a point on the curve, and so the sig is invalid
if (xcubedaxb - y * y) % P != 0 or not (r % N) or not (s % N):
raise ValueError("sig is invalid, %d cannot be the x coord for point on curve" % r)
z = bytes_to_int(msghash)
Gz = jacobian_multiply(cast("PlainPoint3D", (Gx, Gy, 1)), (N - z) % N)
XY = jacobian_multiply(cast("PlainPoint3D", (x, y, 1)), s)
Qr = jacobian_add(Gz, XY)
Q = jacobian_multiply(Qr, inv(r, N))
Q_jacobian = from_jacobian(Q)
return Q_jacobian