forked from Parskatt/RoMa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathroma_indoor.py
320 lines (303 loc) · 12.4 KB
/
roma_indoor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
import os
import torch
from argparse import ArgumentParser
from torch import nn
from torch.utils.data import ConcatDataset
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import json
import wandb
from tqdm import tqdm
from roma.benchmarks import MegadepthDenseBenchmark
from roma.datasets.megadepth import MegadepthBuilder
from roma.datasets.scannet import ScanNetBuilder
from roma.losses.robust_loss import RobustLosses
from roma.benchmarks import MegadepthDenseBenchmark, ScanNetBenchmark
from roma.train.train import train_k_steps
from roma.models.matcher import *
from roma.models.transformer import Block, TransformerDecoder, MemEffAttention
from roma.models.encoders import *
from roma.checkpointing import CheckPoint
resolutions = {"low":(448, 448), "medium":(14*8*5, 14*8*5), "high":(14*8*6, 14*8*6)}
def get_model(pretrained_backbone=True, resolution = "medium", **kwargs):
gp_dim = 512
feat_dim = 512
decoder_dim = gp_dim + feat_dim
cls_to_coord_res = 64
coordinate_decoder = TransformerDecoder(
nn.Sequential(*[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]),
decoder_dim,
cls_to_coord_res**2 + 1,
is_classifier=True,
amp = True,
pos_enc = False,)
dw = True
hidden_blocks = 8
kernel_size = 5
displacement_emb = "linear"
disable_local_corr_grad = True
conv_refiner = nn.ModuleDict(
{
"16": ConvRefiner(
2 * 512+128+(2*7+1)**2,
2 * 512+128+(2*7+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=128,
local_corr_radius = 7,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"8": ConvRefiner(
2 * 512+64+(2*3+1)**2,
2 * 512+64+(2*3+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=64,
local_corr_radius = 3,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"4": ConvRefiner(
2 * 256+32+(2*2+1)**2,
2 * 256+32+(2*2+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=32,
local_corr_radius = 2,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"2": ConvRefiner(
2 * 64+16,
128+16,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=16,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"1": ConvRefiner(
2 * 9 + 6,
24,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks = hidden_blocks,
displacement_emb = displacement_emb,
displacement_emb_dim = 6,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
}
)
kernel_temperature = 0.2
learn_temperature = False
no_cov = True
kernel = CosKernel
only_attention = False
basis = "fourier"
gp16 = GP(
kernel,
T=kernel_temperature,
learn_temperature=learn_temperature,
only_attention=only_attention,
gp_dim=gp_dim,
basis=basis,
no_cov=no_cov,
)
gps = nn.ModuleDict({"16": gp16})
proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512))
proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512))
proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256))
proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64))
proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9))
proj = nn.ModuleDict({
"16": proj16,
"8": proj8,
"4": proj4,
"2": proj2,
"1": proj1,
})
displacement_dropout_p = 0.0
gm_warp_dropout_p = 0.0
decoder = Decoder(coordinate_decoder,
gps,
proj,
conv_refiner,
detach=True,
scales=["16", "8", "4", "2", "1"],
displacement_dropout_p = displacement_dropout_p,
gm_warp_dropout_p = gm_warp_dropout_p)
h,w = resolutions[resolution]
encoder = CNNandDinov2(
cnn_kwargs = dict(
pretrained=pretrained_backbone,
amp = True),
amp = True,
use_vgg = True,
)
matcher = RegressionMatcher(encoder, decoder, h=h, w=w, alpha=1, beta=0,**kwargs)
return matcher
def train(args):
dist.init_process_group('nccl')
#torch._dynamo.config.verbose=True
gpus = int(os.environ['WORLD_SIZE'])
# create model and move it to GPU with id rank
rank = dist.get_rank()
print(f"Start running DDP on rank {rank}")
device_id = rank % torch.cuda.device_count()
roma.LOCAL_RANK = device_id
torch.cuda.set_device(device_id)
resolution = args.train_resolution
wandb_log = not args.dont_log_wandb
experiment_name = os.path.splitext(os.path.basename(__file__))[0]
wandb_mode = "online" if wandb_log and rank == 0 and False else "disabled"
wandb.init(project="roma", entity=args.wandb_entity, name=experiment_name, reinit=False, mode = wandb_mode)
checkpoint_dir = "workspace/checkpoints/"
h,w = resolutions[resolution]
model = get_model(pretrained_backbone=True, resolution=resolution, attenuate_cert = False).to(device_id)
# Num steps
global_step = 0
batch_size = args.gpu_batch_size
step_size = gpus*batch_size
roma.STEP_SIZE = step_size
N = (32 * 250000) # 250k steps of batch size 32
# checkpoint every
k = 25000 // roma.STEP_SIZE
# Data
mega = MegadepthBuilder(data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True)
use_horizontal_flip_aug = True
rot_prob = 0
depth_interpolation_mode = "bilinear"
megadepth_train1 = mega.build_scenes(
split="train_loftr", min_overlap=0.01, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
ht=h,wt=w,
)
megadepth_train2 = mega.build_scenes(
split="train_loftr", min_overlap=0.35, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, rot_prob = rot_prob,
ht=h,wt=w,
)
megadepth_train = ConcatDataset(megadepth_train1 + megadepth_train2)
mega_ws = mega.weight_scenes(megadepth_train, alpha=0.75)
scannet = ScanNetBuilder(data_root="data/scannet")
scannet_train = scannet.build_scenes(split="train", ht=h, wt=w, use_horizontal_flip_aug = use_horizontal_flip_aug)
scannet_train = ConcatDataset(scannet_train)
scannet_ws = scannet.weight_scenes(scannet_train, alpha=0.75)
# Loss and optimizer
depth_loss_scannet = RobustLosses(
ce_weight=0.0,
local_dist={1:4, 2:4, 4:8, 8:8},
local_largest_scale=8,
depth_interpolation_mode=depth_interpolation_mode,
alpha = 0.5,
c = 1e-4,)
# Loss and optimizer
depth_loss_mega = RobustLosses(
ce_weight=0.01,
local_dist={1:4, 2:4, 4:8, 8:8},
local_largest_scale=8,
depth_interpolation_mode=depth_interpolation_mode,
alpha = 0.5,
c = 1e-4,)
parameters = [
{"params": model.encoder.parameters(), "lr": roma.STEP_SIZE * 5e-6 / 8},
{"params": model.decoder.parameters(), "lr": roma.STEP_SIZE * 1e-4 / 8},
]
optimizer = torch.optim.AdamW(parameters, weight_decay=0.01)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=[(9*N/roma.STEP_SIZE)//10])
megadense_benchmark = MegadepthDenseBenchmark("data/megadepth", num_samples = 1000, h=h,w=w)
checkpointer = CheckPoint(checkpoint_dir, experiment_name)
model, optimizer, lr_scheduler, global_step = checkpointer.load(model, optimizer, lr_scheduler, global_step)
roma.GLOBAL_STEP = global_step
ddp_model = DDP(model, device_ids=[device_id], find_unused_parameters = False, gradient_as_bucket_view=True)
grad_scaler = torch.cuda.amp.GradScaler(growth_interval=1_000_000)
grad_clip_norm = 0.01
for n in range(roma.GLOBAL_STEP, N, k * roma.STEP_SIZE):
mega_sampler = torch.utils.data.WeightedRandomSampler(
mega_ws, num_samples = batch_size * k, replacement=False
)
mega_dataloader = iter(
torch.utils.data.DataLoader(
megadepth_train,
batch_size = batch_size,
sampler = mega_sampler,
num_workers = 8,
)
)
scannet_ws_sampler = torch.utils.data.WeightedRandomSampler(
scannet_ws, num_samples=batch_size * k, replacement=False
)
scannet_dataloader = iter(
torch.utils.data.DataLoader(
scannet_train,
batch_size=batch_size,
sampler=scannet_ws_sampler,
num_workers=gpus * 8,
)
)
for n_k in tqdm(range(n, n + 2 * k, 2),disable = roma.RANK > 0):
train_k_steps(
n_k, 1, mega_dataloader, ddp_model, depth_loss_mega, optimizer, lr_scheduler, grad_scaler, grad_clip_norm = grad_clip_norm, progress_bar=False
)
train_k_steps(
n_k + 1, 1, scannet_dataloader, ddp_model, depth_loss_scannet, optimizer, lr_scheduler, grad_scaler, grad_clip_norm = grad_clip_norm, progress_bar=False
)
checkpointer.save(model, optimizer, lr_scheduler, roma.GLOBAL_STEP)
wandb.log(megadense_benchmark.benchmark(model), step = roma.GLOBAL_STEP)
def test_scannet(model, name, resolution, sample_mode):
scannet_benchmark = ScanNetBenchmark("data/scannet")
scannet_results = scannet_benchmark.benchmark(model)
json.dump(scannet_results, open(f"results/scannet_{name}.json", "w"))
if __name__ == "__main__":
import warnings
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
warnings.filterwarnings('ignore')#, category=UserWarning)#, message='WARNING batched routines are designed for small sizes.')
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations
os.environ["OMP_NUM_THREADS"] = "16"
import roma
parser = ArgumentParser()
parser.add_argument("--test", action='store_true')
parser.add_argument("--debug_mode", action='store_true')
parser.add_argument("--dont_log_wandb", action='store_true')
parser.add_argument("--train_resolution", default='medium')
parser.add_argument("--gpu_batch_size", default=4, type=int)
parser.add_argument("--wandb_entity", required = False)
args, _ = parser.parse_known_args()
roma.DEBUG_MODE = args.debug_mode
if not args.test:
train(args)
experiment_name = os.path.splitext(os.path.basename(__file__))[0]
checkpoint_dir = "workspace/"
checkpoint_name = checkpoint_dir + experiment_name + ".pth"
test_resolution = "medium"
sample_mode = "threshold_balanced"
symmetric = True
upsample_preds = False
attenuate_cert = True
model = get_model(pretrained_backbone=False, resolution = test_resolution, sample_mode = sample_mode, upsample_preds = upsample_preds, symmetric=symmetric, name=experiment_name, attenuate_cert = attenuate_cert)
model = model.cuda()
states = torch.load(checkpoint_name)
model.load_state_dict(states["model"])
test_scannet(model, experiment_name, resolution = test_resolution, sample_mode = sample_mode)