forked from Weeshlow/EagleEye
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathface_recog.py
82 lines (76 loc) · 3.38 KB
/
face_recog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import cv2
import face_recognition
from urllib.request import urlretrieve
from pathlib import Path
import os
import tempfile
from sys import platform
import random
import string
import utils.console as console
class FaceRecog:
def __init__(self, profile_list, profile_img, num_jitters=10):
self.profile_list = profile_list
self.profile_img = profile_img
self.num_jitters = num_jitters
self.known_face_encodings = []
self.known_face_names = []
console.section('Starting Face Recognition')
def loadKnown(self, label):
console.task('Loading known faces')
pathlist = Path('./known').glob('**/*.jpg')
for path in pathlist:
p_str = str(path)
delim = '/'
if platform == "win32":
delim = '\\'
console.subtask('Loading {0}'.format(p_str.split(delim)[1]))
im = face_recognition.load_image_file(p_str)
encoding = face_recognition.face_encodings(im, num_jitters=self.num_jitters)
for e in encoding:
self.known_face_encodings.append(e)
self.known_face_names.append(label)
def constructIndexes(self, label):
valid_links = []
console.section('Analyzing')
file_name = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(6))
file_name += '.jpg'
tmp_path = os.path.join(tempfile.gettempdir(), file_name)
console.task("Storing Image in {0}".format(tmp_path))
for num, i in enumerate(self.profile_img):
console.task('Analyzing {0}...'.format(i.strip()[:90]))
urlretrieve(i, tmp_path)
frame = cv2.imread(tmp_path)
big_frame = cv2.resize(frame, (0, 0), fx=2.0, fy=2.0)
rgb_small_frame = big_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations, num_jitters=self.num_jitters)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = self.known_face_names[first_match_index]
face_names.append(name)
for _, name in zip(face_locations, face_names):
if name == label:
valid_links.append(num)
if os.path.isfile(tmp_path):
console.task("Removing {0}".format(tmp_path))
os.remove(tmp_path)
return valid_links
def getValidLinksAndImg(self, label):
if len(self.known_face_encodings) <= 0:
console.failure('No Face Encodings found!')
console.failure('Did you call `loadKnown(label)` before calling this method?')
return []
valid_url = []
valid_img = []
valid_indexes = self.constructIndexes(label)
for index in valid_indexes:
valid_url.append(self.profile_list[index])
valid_img.append(self.profile_img[index])
return valid_url, valid_img