-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_knn.py
executable file
·372 lines (288 loc) · 11.3 KB
/
eval_knn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
# Getting latend space using Hooks :
# https://towardsdatascience.com/the-one-pytorch-trick-which-you-should-know-2d5e9c1da2ca
# Binary Classification
# https://jbencook.com/cross-entropy-loss-in-pytorch/
'''
Version: 3.1
- pretrained model is automatically loaded based on the model and session names
'''
import argparse
import yaml
import os
import torch
from pipeline_factory import dataloader_handler
import numpy as np
import tqdm
from utils.viz import myplot
def force_cudnn_initialization():
s = 32
dev = torch.device('cuda')
torch.nn.functional.conv2d(torch.zeros(s, s, s, s, device=dev), torch.zeros(s, s, s, s, device=dev))
def plot_retrieval_on_map(poses,predictions,sim_thresh=0.5,loop_range=1,topk=1,record_gif=False,**argv):
# Save Similarity map
save_dir =''
if 'save_dir' in argv:
save_dir = argv['save_dir']
file_name = f'experiment'
if 'gif_name' in argv:
file_name = argv['gif_name']
save_steps_flag = False
save_step_dir = ''
save_step_itrs = []
if 'save_step_itr' in argv and isinstance(argv['save_step_itr'],list):
save_step_itrs = argv['save_step_itr']
save_step_dir = os.path.join(save_dir,file_name)
os.makedirs(save_step_dir,exist_ok=True)
plot = myplot(delay = 0.001)
plot.init_plot(poses[:,0],poses[:,1],c='k',s=10)
plot.xlabel('m')
plot.ylabel('m')
if record_gif == True:
# Build the name of the file
name = os.path.join(save_dir,file_name+'.gif') # Only add .gif here because the name is used below as name of a dir
plot.record_gif(name)
keys = list(predictions.keys())
first_point = keys[0].item()
n_samples = poses.shape[0]
true_positive = []
wrong = []
query_list = list(range(first_point,n_samples,20))
for itr,query in tqdm.tqdm(enumerate(query_list),total = len(query_list)):
c = np.array(['k']*(query+1)) # set to gray by default
#c[:query] = ['k']*query
s = np.ones(query+1)*10
query_label = predictions[query]['label']
true_loops = predictions[query]['true_loops']
cand_loops = predictions[query]['cand_loops']
# array of booleans
knn = np.zeros(len(cand_loops['idx']),dtype=bool)
knn[:topk] = True
positives = cand_loops['sim'] < sim_thresh
inrange = cand_loops['dist'] < loop_range
inrow = cand_loops['labels'] == query_label
bool_cand = positives*inrange*inrow*knn
cand_idx = cand_loops['idx'][bool_cand]
loop_idx = true_loops['idx'][true_loops['dist'] < loop_range][:topk]
c[query] = 'b'
s[query] = 80
if len(loop_idx) > 0 and len(cand_idx) > 0:
true_positive.extend(cand_idx)
if len(loop_idx) > 0 and len(cand_idx) == 0:
wrong.append(query)
if len(loop_idx) == 0 and len(cand_idx) > 0:
wrong.append(query)
np_true_positive = np.array(true_positive,dtype=np.int32).flatten()
np_wrong = np.array(wrong,dtype=np.int32).flatten()
c[np_true_positive] = 'g'
s[np_true_positive] = 150
c[np_wrong] = 'r'
s[np_wrong] = 50
plot.update_plot(poses[:query+1,0],poses[:query+1,1],color = c , offset= 1, zoom=-1,scale=s)
# save png of parts of the plot
if itr in save_step_itrs:
plot.save_plot(os.path.join(save_step_dir,f'{itr}.png'))
if __name__ == '__main__':
parser = argparse.ArgumentParser("./infer.py")
parser.add_argument(
'--dataset_root',type=str, required=False,
default='/home/tiago/workspace/DATASET',
help='Directory to the dataset root'
)
parser.add_argument(
'--network', type=str,
default='PointNetPGAP', help='model to be used'
)
parser.add_argument(
'--experiment',type=str,
default='RALv3',
help='Name of the experiment to be executed'
)
parser.add_argument(
'--memory', type=str,
default='DISK',
choices=['DISK','RAM'],
help='RAM: loads the dataset to the RAM memory first. DISK: loads the dataset on the fly from the disk'
)
parser.add_argument(
'--device', type=str,
default='cuda',
help='Directory to get the trained model.'
)
parser.add_argument(
'--batch_size',type=int,
default=10,
help='Batch size'
)
parser.add_argument(
'--max_points',type=int,
default = 10000,
help='sampling points.'
)
parser.add_argument(
'--eval_file',
type=str,
required=False,
default = "eval/ground_truth_loop_range_10m.pkl",
help='sampling points.'
)
parser.add_argument(
'--monitor_loop_range',
type=float,
required=False,
default = 10,
help='loop range to monitor the performance.'
)
parser.add_argument(
'--dataset',
type=str,
required=False,
default='HORTO-3DLM', # uk
help='Directory to get the trained model.'
)
parser.add_argument(
'--val_set',
type=str,
required=False,
default = 'ON22',
help = 'Validation set'
)
parser.add_argument(
'--roi',
type=float,
required=False,
default = 0,
help = 'Crop range [m] to crop the point cloud around the scan origin.'
)
parser.add_argument(
'--resume', '-r',
type=str,
required=False,
default='/home/tiago/workspace/pointnetgap-RAL/RALv3/predictions/#PointNetPGAP-LazyTripletLoss_L2/eval-ON22/descriptors.torch',
help='Directory to get the trained model or descriptors.'
)
parser.add_argument(
'--session',
type=str,
required=False,
default = "ukfrpt",
)
parser.add_argument(
'--eval_roi_window',
type=float,
required=False,
default = 600,
help='Number of frames to ignore in imidaite vicinity of the query frame.'
)
parser.add_argument(
'--eval_warmup_window',
type=float,
required=False,
default = 100,
help='Number of frames to ignore in the beginning of the sequence'
)
parser.add_argument(
'--eval_protocol',
type=str,
required=False,
choices=['place'],
default = 'place',
)
parser.add_argument(
'--save_predictions',
type=str,
required=False,
default = 'saved_model_data',
)
parser.add_argument(
'--plot_on_map',
type=str,
required=False,
default = 'saved_model_data',
)
FLAGS, unparsed = parser.parse_known_args()
torch.cuda.empty_cache()
torch.autograd.set_detect_anomaly(True)
session_cfg_file = os.path.join('sessions', FLAGS.session + '.yaml')
print("Opening session config file: %s" % session_cfg_file)
SESSION = yaml.safe_load(open(session_cfg_file, 'r'))
SESSION['save_predictions'] = FLAGS.save_predictions
# Update config file with new settings
SESSION['experiment'] = FLAGS.experiment
# Define evaluation mode: cross_validation or split
SESSION['train_loader']['triplet_file'] = None
# Update the validation loader
SESSION['val_loader']['batch_size'] = FLAGS.batch_size
SESSION['val_loader']['ground_truth_file'] = FLAGS.eval_file
SESSION['val_loader']['augmentation'] = False
# Update the model settings
SESSION['roi'] = FLAGS.roi
SESSION['max_points'] = FLAGS.max_points
SESSION['memory'] = FLAGS.memory
SESSION['monitor_range'] = FLAGS.monitor_loop_range
SESSION['eval_roi_window'] = FLAGS.eval_roi_window
SESSION['descriptor_size'] = 256
SESSION['eval_warmup_window'] = FLAGS.eval_warmup_window
SESSION['eval_protocol'] = FLAGS.eval_protocol
SESSION['device'] = FLAGS.device
print("----------")
print("Saving Predictions: %s"%FLAGS.save_predictions)
print("\n======= VAL LOADER =======")
print("Batch Size : ", str(SESSION['val_loader']['batch_size']))
print("Max Points: " + str(SESSION['max_points']))
print("\n========== MODEL =========")
print("Backbone : ", FLAGS.network)
print("Resume: ", FLAGS.resume )
#print("MiniBatch Size: ", str(SESSION['modelwrapper']['minibatch_size']))
print("\n==========================")
print(f'Eval Protocal: {FLAGS.eval_protocol}')
print(f'Memory: {FLAGS.memory}')
print(f'Device: {FLAGS.device}')
print("Experiment: %s" %(FLAGS.experiment))
print("----------\n")
# For repeatability
torch.manual_seed(0)
np.random.seed(0)
if os.path.isfile(FLAGS.resume):
print("Resuming form %s"%FLAGS.resume)
resume_struct= FLAGS.resume.split('/')
assert np.sum([field.endswith(FLAGS.val_set) for field in resume_struct])>0, "The resume file does not match the validation set"
#assert np.sum([field.endswith(FLAGS.network) for field in resume_struct])>0, "The resume file does not match the network"
######################################################################
loader = dataloader_handler(FLAGS.dataset_root,
FLAGS.network,
FLAGS.dataset,
FLAGS.val_set,
SESSION,
roi = FLAGS.roi,
pcl_norm = False,
model_evaluation='cross_domain')
from place_recognition import PlaceRecognition
eval_approach = PlaceRecognition( FLAGS.network,
loader.get_val_loader(),
1, # Internally it adds top-1%
None,
roi_window = FLAGS.eval_roi_window,
warmup_window = FLAGS.eval_warmup_window,
device = FLAGS.device,
eval_protocol = FLAGS.eval_protocol,
logdir = FLAGS.experiment,
monitor_range = FLAGS.monitor_loop_range,
sim_func= 'L2'
)
# Define a set of loop ranges to be evaluated
topk = 1
loop_range = list(range(0,120,1))
# Check if the resume file exists
assert os.path.exists(FLAGS.resume), "File not found %s"%FLAGS.resume
root_path = os.path.dirname(FLAGS.resume)
if FLAGS.resume.split('/')[-1] == 'descriptors.torch':
print('Loading descriptors from %s'%FLAGS.resume)
eval_approach.load_descriptors(FLAGS.resume)
# Run the evaluation
eval_approach.run(loop_range=loop_range)
eval_approach.save_params()
eval_approach.save_descriptors()
eval_approach.save_predictions_pkl()
eval_approach.save_results_csv()