forked from yiwenlu66/WxApp4SD_backend
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathself-portrait-backend.py
137 lines (117 loc) · 3.98 KB
/
self-portrait-backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import threading
import atexit
from flask import Flask, request, send_from_directory
from os import listdir
import os.path
import numpy as np
from PIL import Image
from grpc.beta import implementations
import tensorflow as tf
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2
DATA_DIR = 'data'
POOL_TIME = 0.5
q = []
processing = set()
finished = None
style_dict = {}
lock = threading.Lock()
thread = threading.Thread()
watermark = Image.open('watermark.png').resize((512, 512), Image.ANTIALIAS)
channels = []
stubs = []
for i in range(3):
channels.append(implementations.insecure_channel('127.0.0.1', 9000 + i))
stubs.append(
prediction_service_pb2.beta_create_PredictionService_stub(channels[i]))
def create_rpc_callback(user_id):
def callback(result_future):
print('callback: {}'.format(user_id))
if not result_future.exception():
im = np.array(
result_future.result().outputs['output_image'].float_val
).reshape([512, 512, 3])
im = Image.fromarray(im.astype(np.uint8))
im = im.convert('RGBA')
im = Image.alpha_composite(im, watermark).convert('RGB')
im.save(os.path.join(DATA_DIR, user_id + '_processed.png'))
with lock:
if user_id in processing:
processing.remove(user_id)
finished.add(user_id)
return callback
def create_app():
app = Flask(__name__)
def interrupt():
global thread
thread.cancel()
def process():
global finished, q
try:
if q:
with lock:
user_id = q[0]
q = q[1:]
processing.add(user_id)
im = Image.open(os.path.join(DATA_DIR, user_id + '_raw.png'))
im = im.resize((512, 512), Image.ANTIALIAS)
im = im.convert('RGB')
request = predict_pb2.PredictRequest()
request.model_spec.name = 'fast_style_transfer'
request.model_spec.signature_name = 'predict_image'
request.inputs['input_image'].CopyFrom(
tf.contrib.util.make_tensor_proto(
np.asarray(im, np.float32), shape=[1, 512, 512, 3]
)
)
result_future = stubs[style_dict[user_id]].Predict.future(
request, 30.0)
result_future.add_done_callback(create_rpc_callback(user_id))
except:
thread = threading.Timer(POOL_TIME, process, ())
thread.start()
def process_start():
# initialize finished set
global finished
finished = set()
for filename in listdir(DATA_DIR):
if filename.endswith('_processed.png'):
finished.add(filename.split('_')[0])
global thread
thread = threading.Timer(POOL_TIME, process, ())
thread.start()
process_start()
atexit.register(interrupt)
return app
app = create_app()
@app.route('/upload/', methods=['POST'])
def upload():
global q
user_id = request.form['id']
if user_id not in q:
im = Image.open(request.files['data'])
im.save(os.path.join(DATA_DIR, user_id + '_raw.png'))
with lock:
style_dict[user_id] = int(request.form['style'])
q.append(user_id)
return 'ok'
return 'failure'
@app.route('/download/', methods=['GET'])
def download():
global finished
user_id = request.args['id']
if user_id in finished:
return send_from_directory(DATA_DIR, user_id + '_processed.png')
@app.route('/query/', methods=['GET'])
def query():
global finished, q
user_id = request.args['id']
try:
return str(list(q).index(user_id) + 1)
except ValueError:
if user_id in processing:
return '0'
if user_id in finished:
return '-1'
return '-2'
if __name__ == '__main__':
app.run(host='0.0.0.0')