From 7d11a4c74798532ed9073b32fd0972db9091072b Mon Sep 17 00:00:00 2001 From: Charles Swartz Date: Fri, 13 Sep 2024 20:22:52 -0400 Subject: [PATCH] Add docstring to the pydantic check_output --- hamilton/plugins/h_pydantic.py | 63 ++++++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) diff --git a/hamilton/plugins/h_pydantic.py b/hamilton/plugins/h_pydantic.py index 2d13e1c55..e1ac26c56 100644 --- a/hamilton/plugins/h_pydantic.py +++ b/hamilton/plugins/h_pydantic.py @@ -17,6 +17,69 @@ def __init__( importance: str = dq_base.DataValidationLevel.WARN.value, target: fm_base.TargetType = None, ): + """Specific output-checker for pydantic models. This decorator utilizes the output type of + the function, which can be any subclass of pydantic.BaseModel. The function output must + be declared with a type hint. + + :param model: The pydantic model to use for validation. If this is not provided, then the output type of the function is used. + :param importance: Importance level (either "warn" or "fail") -- see documentation for check_output for more details. + :param target: The target of the decorator -- see documentation for check_output for more details. + + Here is an example of how to use this decorator with a function that returns a pydantic model: + + .. code-block:: python + :name: "@check_output using pydantic model output" + + from pydantic import BaseModel + from hamilton.plugins import h_pydantic + + class MyModel(BaseModel): + a: int + b: float + c: str + + @h_pydantic.check_output() + def foo() -> MyModel: + return MyModel(a=1, b=2.0, c="hello") + + Alternatively, you can return a dictionary from the function (type checkers will probably + complain about this): + + .. code-block:: python + :name: "@check_output using dict output" + + from pydantic import BaseModel + from hamilton.plugins import h_pydantic + + class MyModel(BaseModel): + a: int + b: float + c: str + + @h_pydantic.check_output() + def foo() -> MyModel: + return {"a": 1, "b": 2.0, "c": "hello"} + + Note, that because we do not (yet) support modification of the output, the validation is + performed in strict mode, meaning that no data coercion is performed. For example, the + following function will *fail* validation: + + .. code-block:: python + :name: "@check_output invalid output in strict mode" + + from pydantic import BaseModel + from hamilton.plugins import h_pydantic + + class MyModel(BaseModel): + a: int # Defined as an int + + @h_pydantic.check_output() # This will fail validation! + def foo() -> MyModel: + return MyModel(a="1") # Assigned as a string + + For more information about strict mode see the pydantic docs: https://docs.pydantic.dev/latest/concepts/strict_mode/ + + """ super(check_output, self).__init__(target) self.importance = importance self.target = target