-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_layout.py
397 lines (308 loc) · 14.7 KB
/
train_layout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# file train_layout.py
# author Michal Hradiš, Kristína Hostačná
import os
import json
import numpy as np
import pandas as pd
import argparse
import logging
import matplotlib.pyplot as plt
import cv2
import networkx as nx
import torch
import torch.nn.functional as F
from torch_geometric.data import Data, Batch
from torch_geometric.loader import DataLoader
from torch_geometric.utils import to_networkx
from shapely.geometry import LineString, Point
from sklearn.preprocessing import OneHotEncoder, LabelEncoder, MinMaxScaler, KBinsDiscretizer, FunctionTransformer
from nets import net_factory
from lineToLabel import CardMeta
from augumentations import augument_img, normalize_inputs, keypoints_to_array, parse_augumentation, augument
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument(
'--name', help='Model name', required=True)
parser.add_argument(
'-d', '--data-path', help='Path to data csv file', required=True)
parser.add_argument('--start-iteration', default=0, type=int)
parser.add_argument('--max-iterations', default=50000, type=int)
parser.add_argument('--view-step', default=1000, type=int)
parser.add_argument('-i', '--in-checkpoint', type=str)
parser.add_argument('-o', '--out-checkpoint', type=str)
parser.add_argument('--checkpoint-dir', default='.', type=str)
parser.add_argument('-g', '--gpu-id', type=int,
help="If not set setGPU() is called. Set this to 0 on desktop. Leave it empty on SGE.")
parser.add_argument('--batch-size', default=32, type=int, help="Batch size.")
parser.add_argument('--learning-rate', type=float, default=0.0002, help="Learning rate for ADAM.")
parser.add_argument('--net-config', default='{"type": "mlp", "hidden_dim": 128, "depth": 4}',
help="Json network config.")
parser.add_argument('--optimization-config', default='{"type":"Adam"}')
parser.add_argument('--k-nearest', default=4, type=int, help="K nearest neighbors when building the graph.")
parser.add_argument('--imgs-list', type=str, help="List of paths to images to be saved after augumetation.")
parser.add_argument('--imgs-dst', type=str, default="./", help="Path to save augumented images to.") # "/withGraph"
parser.add_argument('--aug-num', type=int, default=1, help="Number of augumented images to generate.")
parser.add_argument('--aug', type=str, help="Augumentation config.")
args = parser.parse_args()
return args
def find_neighbours(line, card_lines, k_nearest=4):
shapely_line = LineString([Point(line[0], line[1]), Point(line[2], line[3])])
lines_distances = []
for neighbour in card_lines:
line_center = Point((neighbour[0] + neighbour[2]) / 2, (neighbour[1] + neighbour[3]) / 2)
lines_distances.append(line_center.distance(shapely_line))
res = {distance: index for index, distance in enumerate(lines_distances)}
res = dict(sorted(res.items()))
return list(res.items())[:k_nearest]
def split_to_cards(data_frame):
cards = data_frame.cardName.to_numpy().reshape(-1, 1)
card_indices = np.unique(cards, return_index=True)
card_names=[(x,y) for (x, y) in sorted(zip(card_indices[0], card_indices[1]), key=lambda pair: pair[1])]
card_indices[1].sort()
card_starts_indices = card_indices[1]
card_starts_indices = np.append(card_starts_indices, len(cards))
return (card_starts_indices, card_names)
def preprocess_data(data_frame):
startX = data_frame.startX.to_numpy().reshape(-1, 1)
startY = data_frame.startY.to_numpy().reshape(-1, 1)
endX = data_frame.endX.to_numpy().reshape(-1, 1)
endY = data_frame.endY.to_numpy().reshape(-1, 1)
labels_data = np.array(data_frame.label).reshape(-1, 1)
int_encoder = LabelEncoder()
labels = int_encoder.fit_transform(labels_data.ravel()).reshape(-1, 1)
onehot_encoder = OneHotEncoder(sparse=False).fit(labels)
oh_labels = onehot_encoder.transform(labels)
inputs = np.concatenate((startX, startY, endX, endY), axis=1)
# normalize inputs
inputs[..., 0] /= 1200
inputs[..., 1] /= 1700
inputs[..., 2] /= 1200
inputs[..., 3] /= 1700
return (inputs,oh_labels)
def data_to_graphs(card_starts_indices, inputs, oh_labels, k_nearest):
graphs = []
# for each card
for index, card in enumerate(card_starts_indices):
# split by cards
if index < len(card_starts_indices) - 1:
lines = []
edges = []
target = []
center = []
for line in range(card, card_starts_indices[index + 1]):
center.append(((inputs[line][0] + inputs[line][2]) / 2, (inputs[line][1] + inputs[line][3]) / 2))
lines.append(inputs[line])
target.append(oh_labels[line])
line_neigh = find_neighbours(inputs[line], inputs[card: card_starts_indices[
index + 1]], k_nearest=k_nearest)
for neigh_distance, neigh_index in line_neigh:
edges.append([line - card, neigh_index])
nodes_lines = torch.tensor(np.array(lines), dtype=torch.float)
edge_index = torch.tensor(np.array(edges), dtype=torch.long)
pos = torch.tensor(np.array(center), dtype=torch.float)
targets = torch.tensor(np.array(target), dtype=torch.float)
graphs.append(Data(x=nodes_lines, y=targets, pos=pos, edge_index=edge_index.t().contiguous()))
return graphs
def create_modified_graph(graph, inputs=None, outputs=None, edges=None):
if inputs is None:
inputs=graph['x']
if outputs is None:
outputs=graph['y']
if edges is None:
edges=graph['edge_index']
pos = []
for idx, center in enumerate(inputs):
pos.append(((inputs[idx][0] + inputs[idx][2]) / 2, (inputs[idx][1] + inputs[idx][3]) / 2))
pos = torch.tensor(np.array(pos), dtype=torch.float)
modified_graph= Data(x=inputs, y=outputs, pos=pos, edge_index=edges)
return modified_graph
def get_dataframe(data_path):
data = pd.read_csv(data_path, converters={'startX': float, 'startY': float,
'endX': float, 'endY': float,
'cardHeight': int, 'cardWidth': int})
df = pd.DataFrame(data)
return df
def load_data(data_path, k_nearest, aug=None, aug_num=1, n_of_cards_training = 0):
# TODO: split by cards, THEN augument, THEN create graphs
df= get_dataframe(data_path)
card_starts_indices, _ = split_to_cards(df)
inputs,oh_labels = preprocess_data(df)
graphs = data_to_graphs(card_starts_indices, inputs, oh_labels, k_nearest)
return graphs
def graph_to_image(img, graph, thickness=2, circles=True):
center_list=nx.get_node_attributes(graph, "pos")
color=(255, 0, 0)
for u,v in graph.edges:
x1= int(np.round(center_list[u][0]*1200))
y1= int(np.round(center_list[u][1]*1700))
x2= int(np.round(center_list[v][0]*1200))
y2= int(np.round(center_list[v][1]*1700))
cv2.line(img, (x1,y1),(x2,y2), color, thickness)
if circles:
cv2.circle(img, (x1,y1), 3, color, 4)
cv2.circle(img, (x2,y2), 3, color, 4)
return img
def get_og_graph_imgs(csv_path):
graphs = load_data(csv_path, 8, aug=None, aug_num=1, n_of_cards_training = 0)#csv_path
df= get_dataframe(csv_path)
_,card_names = split_to_cards(df)
return (card_names,graphs)
def save_graph_img(img, graph, dst_path):
img = graph_to_image(img, graph, circles=True)
cv2.imwrite(dst_path, img)
def find_img (card_path):
if not os.path.exists(os.path.join(card_path)):
return None
else:
img = cv2.imread(card_path)
return img
def save_graph_imgs(src_path, card_names, graphs, dst_path):
for img_path in src_path:
img=find_img(img_path)
if img is None:
print("IMG "+img_path+ " not found")
continue
for card_idx, card in enumerate(card_names):
graph = to_networkx(graphs[card_idx], node_attrs=["x", "pos"], to_undirected=True)
card_name=os.path.basename(card_names[card_idx][0])
# img
if not os.path.exists(dst_path):
os.makedirs(dst_path)
new_file_name = os.path.join(dst_path, card.name)
save_graph_img(img, graph, new_file_name)
def test(data_loader, model):
model = model.eval()
# Accumulators
loss_acc = 0
correct = 0
counter = 0
batch_items = 0
# Loop through dataset
for batch_data in data_loader:
batch_data = batch_data.to(next(model.parameters()).device)
# Calculate output
output = model(batch_data)
# Accumulate loss value
loss_acc += F.cross_entropy(output, batch_data.y).item()
# Calculate accuracy
pred_y = torch.argmax(output,dim=1)
label = torch.argmax(batch_data.y,dim=1)
correct += (pred_y == label).sum().item()
# Accumulate batch size (graphs don't have constant number of nodes)
counter += batch_data.x.shape[0]
batch_items += 1
model.train()
return loss_acc / batch_items, correct / counter
def load_cards(csv_path, k_neighbours=8):
graphs = load_data(csv_path, k_neighbours, aug=None, aug_num=1, n_of_cards_training = 0)
df= get_dataframe(csv_path)
heights = df.cardHeight.to_numpy().reshape(-1, 1)
widths = df.cardWidth.to_numpy().reshape(-1, 1)
card_starts_indices,card_names = split_to_cards(df)
cards=[]
for idx,card_name in enumerate(card_names):
df_idx=card_starts_indices[idx]
card = CardMeta(card_name[0], int(heights[df_idx]), int(widths[df_idx]))
g = to_networkx(graphs[idx], node_attrs=["x" ,"y", "pos"], to_undirected=True)
card.add_graphs(graphs[idx],g)
cards.append(card)
return cards
def main():
print("START")
args = parse_arguments()
split_idx = 50
cards= load_cards(args.data_path, 8)
graphs = load_data(args.data_path, k_nearest=args.k_nearest)
if args.aug is not None:
seq_config = json.loads(args.aug)
seq= parse_augumentation(**seq_config)
if args.imgs_list is not None:
# get img_names
img_names={}
if type(args.imgs_list) == list:
for card_path in args.imgs_list:
img_names[os.path.basename(card_path)] = card_path
else:
img_names[os.path.basename(args.imgs_list)] = args.imgs_list
augumented_graphs = []
for idx, card in enumerate(cards):
if card.name in img_names:
img = cv2.imread(img_names[card.name])
card.add_img(img)
augumented_data = augument_img(card, seq, args.aug_num) # list[(augumented_img, augumented_coords),...]
counter=0
for (augumented_img, augumented_coords) in augumented_data:
if idx >= split_idx:
inputs=keypoints_to_array(augumented_coords)
inputs= normalize_inputs(inputs,(card.height,card.width))
inputs=torch.tensor(np.array(inputs), dtype=torch.float)
aug_graph= create_modified_graph(card.graph, inputs=inputs)
augumented_graphs.append(aug_graph)
if card.img is not None:
if counter==0:
img = graph_to_image(card.img, card.nx_graph)
cv2.imwrite(os.path.join(args.imgs_dst, card.name), img)
aug_g = to_networkx(aug_graph, node_attrs=["x" , "pos"], to_undirected=True)
img = graph_to_image(augumented_img, aug_g)
dst_path=os.path.join(args.imgs_dst, str(counter)+ card.name)
cv2.imwrite(dst_path, img)
counter += 1
train_dataset = graphs[split_idx:] + augumented_graphs
else:
train_dataset = graphs[split_idx:]
test_dataset = graphs[:split_idx]
# Create training and testing DataLoaders
training_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=0)
testing_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=0)
config = json.loads(args.net_config)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = net_factory(config, input_dim=4, output_dim=11)
checkpoint_path = None
if args.in_checkpoint is not None:
checkpoint_path = args.in_checkpoint
elif args.start_iteration:
checkpoint_path = os.path.join(args.checkpoint_dir, "checkpoint_{:06d}.pth".format(args.start_iteration))
if checkpoint_path is not None:
logging.info(f"Restore {checkpoint_path}")
model.load_state_dict(torch.load(checkpoint_path))
model = model.to(device)
optim_config = json.loads(args.optimization_config)
optim_type = optim_config['type'].lower()
del optim_config['type']
if optim_type == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, **optim_config)
elif optim_type == 'adamw':
optimizer = torch.optim.AdamW(model.parameters(), lr=args.learning_rate, **optim_config)
logging.info('Start')
loss_list = []
iteration = args.start_iteration
while iteration < args.max_iterations:
for data in training_loader:
iteration += 1
data = data.to(device)
optimizer.zero_grad()
out = model(data)
loss = F.cross_entropy(out, data.y).mean()
loss.backward()
optimizer.step()
loss_list.append(loss.item())
if iteration % args.view_step == 0:
if args.out_checkpoint is not None:
checkpoint_path = args.out_checkpoint
else:
if not os.path.exists(args.checkpoint_dir):
os.makedirs(args.checkpoint_dir)
checkpoint_path = os.path.join(args.checkpoint_dir, "checkpoint_{:06d}.pth".format(iteration + 1))
torch.save(model.state_dict(), checkpoint_path)
# Calculate loss and accuracy on the testing dataset
test_loss_acc, acc = test(testing_loader, model)
print(f"accuracy_score:{acc:.3f} "
f"iteration:{iteration} "
f"train_loss:{np.mean(loss_list):.3f} "
f"test_loss:{test_loss_acc:.3f} ")
loss_list = []
# Stop training when amount of iterations is reached
if iteration >= args.max_iterations:
break
if __name__ == "__main__":
main()