forked from jongyaoY/fignet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpreprocess_data.py
102 lines (89 loc) · 3.29 KB
/
preprocess_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# MIT License
#
# Copyright (c) [2024] [Zongyao Yi]
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import os
import pickle
import sys
from pathlib import Path
import torch
import torchvision.transforms as T
import tqdm
import yaml
from fignet.data_loader import MujocoDataset, ToTensor
parser = argparse.ArgumentParser()
parser.add_argument("--config_file", type=str, required=True)
parser.add_argument("--data_path", type=str, required=True)
parser.add_argument("--num_workers", type=int, required=True, default=1)
args = parser.parse_args()
data_path = args.data_path
config_file = args.config_file
num_workers = max(args.num_workers, 1)
batch_size = min(2 * num_workers, 64)
output_path = os.path.join(Path(data_path).parent, Path(data_path).stem)
device = torch.device("cpu")
def collate_fn(batch):
return batch
def save_graph(graph, graph_i, save_path):
if isinstance(graph, list):
batch_size = len(graph)
for g_i, g in enumerate(graph):
i = graph_i * batch_size + g_i
save_graph(g, i, save_path)
else:
graph_dict = graph.to_dict()
if not os.path.exists(save_path):
os.mkdir(save_path)
file_name = os.path.join(save_path, f"graph_{graph_i}.pkl")
with open(file_name, "wb") as f:
pickle.dump(graph_dict, f)
if __name__ == "__main__":
try:
with open(os.path.join(os.getcwd(), args.config_file)) as f:
config = yaml.safe_load(f)
except FileNotFoundError as e:
print(e)
sys.exit()
print(
f"Parsing {data_path}. Preprocessed graphs will be stored in {output_path}"
)
try:
dataset = MujocoDataset(
path=data_path,
mode="sample",
input_sequence_length=3,
transform=T.Compose([ToTensor(device)]),
config=config.get("data_config"),
)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=False,
collate_fn=collate_fn,
)
for i, sample in enumerate(
tqdm.tqdm(data_loader, desc="Preprocessing data")
):
save_graph(sample, i, output_path)
except FileNotFoundError as e:
print(e)