forked from tommyMessi/tableImageParser_tx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataf.py
executable file
·248 lines (198 loc) · 8.54 KB
/
dataf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# coding:utf-8
import glob
import csv
import cv2
import time
import os
import numpy as np
from shapely.geometry import Polygon
import tensorflow as tf
from data_util import GeneratorEnqueuer
tf.app.flags.DEFINE_string('training_data_path', './tx_data/image',
'training dataset to use')
FLAGS = tf.app.flags.FLAGS
def get_images():
files = []
for ext in ['jpg', 'png', 'jpeg', 'JPG']:
files.extend(glob.glob(
os.path.join(FLAGS.training_data_path, '*.{}'.format(ext))))
return files
def load_annoataion(p):
'''
load annotation from the text file
:param p:
:return:
'''
text_polys = []
text_tags = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32)
with open(p, 'r') as f:
reader = csv.reader(f)
for line in reader:
label = line[-1]
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
text_polys.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
if label == '*' or label == '###':
text_tags.append(True)
else:
text_tags.append(False)
return np.array(text_polys, dtype=np.float32), np.array(text_tags, dtype=np.bool)
def crop_area(im, label_im,crop_background=False, max_tries=150):
size = (int(512), int(512))
im_p = cv2.resize(im, size, interpolation=cv2.INTER_AREA)
la_p = cv2.resize(label_im, size, interpolation=cv2.INTER_AREA)
return im_p,la_p
def point_dist_to_line(p1, p2, p3):
# compute the distance from p3 to p1-p2
return np.linalg.norm(np.cross(p2 - p1, p1 - p3)) / np.linalg.norm(p2 - p1)
def fit_line(p1, p2):
# fit a line ax+by+c = 0
if p1[0] == p1[1]:
return [1., 0., -p1[0]]
else:
[k, b] = np.polyfit(p1, p2, deg=1)
return [k, -1., b]
def line_cross_point(line1, line2):
# line1 0= ax+by+c, compute the cross point of line1 and line2
if line1[0] != 0 and line1[0] == line2[0]:
print('Cross point does not exist')
return None
if line1[0] == 0 and line2[0] == 0:
print('Cross point does not exist')
return None
if line1[1] == 0:
x = -line1[2]
y = line2[0] * x + line2[2]
elif line2[1] == 0:
x = -line2[2]
y = line1[0] * x + line1[2]
else:
k1, _, b1 = line1
k2, _, b2 = line2
x = -(b1-b2)/(k1-k2)
y = k1*x + b1
return np.array([x, y], dtype=np.float32)
def line_verticle(line, point):
# get the verticle line from line across point
if line[1] == 0:
verticle = [0, -1, point[1]]
else:
if line[0] == 0:
verticle = [1, 0, -point[0]]
else:
verticle = [-1./line[0], -1, point[1] - (-1/line[0] * point[0])]
return verticle
def generator_label(label_im, label_str):
label_name = label_str.split('/')[-1]
h, w = label_im.shape
score_map = np.zeros((h, w), dtype=np.uint8)
for i in range(h):
for j in range(w):
if label_im[i][j] == 0:
score_map[i][j] = 0
else:
score_map[i][j] = 1
return score_map
def generator(input_size=512, batch_size=32,
background_ratio=3./8,
random_scale=np.array([0.5, 1, 2.0, 3.0]),
vis=True):
image_list = np.array(get_images())
print('{} training images in {}'.format(
image_list.shape[0], FLAGS.training_data_path))
index = np.arange(0, image_list.shape[0])
while True:
np.random.shuffle(index)
images = []
image_fns = []
score_maps_nrow = []
score_maps_ncol = []
score_maps_row = []
score_maps_col = []
training_masks = []
for i in index:
try:
im_fn = image_list[i]
im = cv2.imread(im_fn)
if '.png' in im_fn:
im_fn = im_fn.replace('.png','.jpg')
h, w, _ = im.shape
label_fn_nrow = im_fn.replace('image', 'label_nrow')
label_fn_ncol = im_fn.replace('image', 'label_ncol')
label_fn_row = im_fn.replace('image', 'label_row')
label_fn_col = im_fn.replace('image', 'label_col')
if not os.path.exists(label_fn_nrow):
print('text file {} does not exists'.format(label_fn_nrow))
continue
if not os.path.exists(label_fn_ncol):
print('text file {} does not exists'.format(label_fn_ncol))
continue
if not os.path.exists(label_fn_row):
print('text file {} does not exists'.format(label_fn_row))
continue
if not os.path.exists(label_fn_col):
print('text file {} does not exists'.format(label_fn_col))
continue
label_im_nrow = cv2.imread(label_fn_nrow, cv2.IMREAD_GRAYSCALE)
label_im_ncol = cv2.imread(label_fn_ncol, cv2.IMREAD_GRAYSCALE)
label_im_row = cv2.imread(label_fn_row, cv2.IMREAD_GRAYSCALE)
label_im_col = cv2.imread(label_fn_col, cv2.IMREAD_GRAYSCALE)
score_map_nrow = generator_label(label_im_nrow, label_fn_nrow)
score_map_ncol = generator_label(label_im_ncol, label_fn_ncol)
score_map_row = generator_label(label_im_row, label_fn_row)
score_map_col = generator_label(label_im_col, label_fn_col)
im, score_map_nrow = crop_area(im, score_map_nrow, crop_background=True)
im, score_map_ncol = crop_area(im, score_map_ncol, crop_background=True)
im, score_map_row = crop_area(im, score_map_row, crop_background=True)
im, score_map_col = crop_area(im, score_map_col, crop_background=True)
im = cv2.resize(im, dsize=(input_size, input_size), interpolation=cv2.INTER_AREA)
score_map_nrow = cv2.resize(score_map_nrow, dsize=(input_size, input_size), interpolation=cv2.INTER_AREA)
score_map_ncol = cv2.resize(score_map_ncol, dsize=(input_size, input_size), interpolation=cv2.INTER_AREA)
score_map_row = cv2.resize(score_map_row, dsize=(input_size, input_size), interpolation=cv2.INTER_AREA)
score_map_col = cv2.resize(score_map_col, dsize=(input_size, input_size), interpolation=cv2.INTER_AREA)
training_mask = np.ones((input_size, input_size), dtype=np.uint8)
images.append(im[:, :, ::-1].astype(np.float32))
image_fns.append(im_fn)
score_maps_nrow.append(score_map_nrow[::2, ::2, np.newaxis].astype(np.float32))
score_maps_ncol.append(score_map_ncol[::2, ::2, np.newaxis].astype(np.float32))
score_maps_row.append(score_map_row[::2, ::2, np.newaxis].astype(np.float32))
score_maps_col.append(score_map_col[::2, ::2, np.newaxis].astype(np.float32))
training_masks.append(training_mask[::2, ::2, np.newaxis].astype(np.float32))
if len(images) == batch_size:
yield images, image_fns, score_maps_nrow, score_maps_ncol, \
score_maps_row, score_maps_col, training_masks
images = []
image_fns = []
score_maps_nrow = []
score_maps_ncol = []
score_maps_row = []
score_maps_col = []
training_masks = []
except Exception as e:
import traceback
print(im_fn)
traceback.print_exc()
continue
def get_batch(num_workers, **kwargs):
try:
enqueuer = GeneratorEnqueuer(generator(**kwargs), use_multiprocessing=True)
print('Generator use 10 batches for buffering, this may take a while, you can tune this yourself.')
enqueuer.start(max_queue_size=10, workers=num_workers)
generator_output = None
while True:
while enqueuer.is_running():
if not enqueuer.queue.empty():
generator_output = enqueuer.queue.get()
break
else:
time.sleep(0.01)
yield generator_output
generator_output = None
finally:
if enqueuer is not None:
enqueuer.stop()
if __name__ == '__main__':
pass