forked from LahiruJayasinghe/DeepDOA
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
191 lines (163 loc) · 7.99 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import tensorflow as tf
import numpy as np
import math
from get_csv_data import HandleData
def corrupt(x):
r = tf.add(x, tf.cast(tf.random_uniform(shape=tf.shape(x),minval=0,maxval=0.1,dtype=tf.float32), tf.float32))
# r = tf.multiply(x,tf.cast(tf.random_uniform(shape=tf.shape(x), minval=0, maxval=0.1, dtype=tf.float32), tf.float32))
return r
def autoencoder(dimensions=[784, 512, 256, 64]):
x = tf.placeholder(tf.float32, [None, dimensions[0]], name='x')
corrupt_prob = tf.placeholder(tf.float32, [1])
current_input = corrupt(x) * corrupt_prob + x * (1 - corrupt_prob) # artificially corrupting the input signal
noise_input = current_input
# Build the encoder
print("========= encoder begin ==========")
encoder = []
for layer_i, n_output in enumerate(dimensions[1:]):
n_input = int(current_input.get_shape()[1])
print("encoder : ", "n_layer",layer_i, "n_output",n_output, "n_input",n_input)
W = tf.Variable(tf.random_uniform([n_input, n_output],-1.0 / math.sqrt(n_input),1.0 / math.sqrt(n_input)))
b = tf.Variable(tf.zeros([n_output]))
encoder.append(W)
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
print("========= encoder end =========")
# latent representation
z = current_input
encoder.reverse()
# Build the decoder using the same weights
print("========= decoder begin ==========")
for layer_i, n_output in enumerate(dimensions[:-1][::-1]):
print("decoder : ", "n_layer", layer_i,"n_output", n_output)
W = tf.transpose(encoder[layer_i]) # transpose of the weights
b = tf.Variable(tf.zeros([n_output]))
output = tf.nn.tanh(tf.matmul(current_input, W) + b)
current_input = output
print("========= decoder end =========")
# now have the reconstruction through the network
y = current_input
# cost function measures pixel-wise difference
cost = tf.sqrt(tf.reduce_mean(tf.square(y - x)))
return {
'x': x,
'z': z,
'y': y,
'corrupt_prob': corrupt_prob,
'cost': cost,
'noise_input' : noise_input
}
def getDAE(antenna_data=[]):
################ AutoEncoder ##############
ae = autoencoder(dimensions=[4, 200])
###########################################
################ Training #################
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
########### restore ###########
saver_restore = tf.train.import_meta_graph('./DAE_save/DenoisingAE_save_noise_add.meta')
saver_restore.restore(sess, tf.train.latest_checkpoint('./DAE_save/'))
###############################
################ Testing trained data #####
return_list = []
for data in antenna_data:
antenna_data_mean = np.mean(data, axis=0)
test_xs_norm = np.array([img - antenna_data_mean for img in data])
a,b,output_y = sess.run([ae['cost'],ae['noise_input'],ae['y']], feed_dict={ae['x']: test_xs_norm, ae['corrupt_prob']: [1.0]})
print("DEA avarage cost : ", a)
return_list.append(output_y)
tf.reset_default_graph()
return return_list
###########################################
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'],name="DNN1")
layer_1 = tf.nn.relu(layer_1,name="DNN2")
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'],name="DNN3")
layer_2 = tf.nn.relu(layer_2,name="DNN4")
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out'],name="DNN5") + biases['out']
return out_layer
if __name__ == "__main__":
data = HandleData(total_data=880,data_per_angle=110,num_angles=8)
antenna_data,label_data = data.get_synthatic_data(test_data=False)
data_test = HandleData(total_data=80, data_per_angle=10, num_angles=8)
antenna_data_test, label_data_test = data_test.get_synthatic_data(test_data=True)
DAE_out = getDAE([antenna_data,antenna_data_test]) # get denoising autoencoder outputs for the train and test data
data.data_set = DAE_out[0]
antenna_data = DAE_out[0]
antenna_data_test = DAE_out[1]
data_test.data_set = DAE_out[1]
TRAIN=False
# Parameters
learning_rate = 0.0001
training_epochs = 2000
batch_size = 5
display_step = 1
# Network Parameters
n_hidden_1 = 12 # 1st layer number of features
n_hidden_2 = 12 # 2nd layer number of features
n_input = 4 # antenna_1,antenna_2,antenna_3,antenna_4
n_classes = 8 # 0,45,90,135,180,225,270,315
# tf Graph input
x = tf.placeholder("float", [None, n_input],name='DNN_x')
y = tf.placeholder("float", [None, n_classes],name='DNN_y')
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1]),name='DNN_w1'),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]),name='DNN_w2'),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]),name='DNN_w3')
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1]),name='DNN_b1'),
'b2': tf.Variable(tf.random_normal([n_hidden_2]),name='DNN_b2'),
'out': tf.Variable(tf.random_normal([n_classes]),name='DNN_b3')
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y),name="DNN_cost")
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,name='DNN_optimizer').minimize(cost)
# Initializing the Graph
init = tf.global_variables_initializer()
saver = tf.train.Saver()
# Launch the graph
with tf.Session() as sess:
sess.run(init)
if TRAIN:
############### Training #################
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(data.total_data/batch_size)
for i in range(total_batch):
batch_x, batch_y = data.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x, y: batch_y})
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1), "cost=","{:.9f}".format(avg_cost))
print("Optimization Finished!")
##########################################
########## save ###########
saver.save(sess, './DAEandDNN_save/DAEandDNN_save')
###########################
else:
########### restore ###########
saver_restore = tf.train.import_meta_graph('./DAEandDNN_save/DAEandDNN_save.meta')
saver_restore.restore(sess, tf.train.latest_checkpoint('./DAEandDNN_save/'))
###############################
#### Calculate accuracy ###
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("Accuracy:", accuracy.eval({x: antenna_data, y: label_data}))
print("Accuracy:", accuracy.eval({x: antenna_data_test, y: label_data_test}))
for i in range(0, 8):
x_i, y_i = data.next_batch(110)
pred_result = sess.run(tf.argmax(pred, 1), feed_dict={x: x_i, y: y_i})
# print('angle = ',i*45 ,' ', collections.Counter(pred_result))
unique, counts = np.unique(pred_result, return_counts=True)
unique_angles = unique * 45
percentage = (counts / 110) * 100
print('angle = ', i * 45, ' ', dict(zip(unique_angles, percentage)))