-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
100 lines (83 loc) · 3.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
from dotenv import load_dotenv
load_dotenv()
from langchain.retrievers.self_query.base import SelfQueryRetriever
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.memory import ConversationTokenBufferMemory
from langchain_core.prompts import MessagesPlaceholder
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain_openai.chat_models import ChatOpenAI
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.vectorstores import Milvus
from milvus import default_server as milvus_server
class RAG():
def __init__(self,
docs_dir: str,
n_retrievals: int = 4,
chat_max_tokens: int = 3097,
model_name = "gpt-3.5-turbo",
creativeness: float = 0.7):
self.__model = self.__set_llm_model(model_name, creativeness)
self.__docs_list = self.__get_docs_list(docs_dir)
self.__retriever = self.__set_retriever(k=n_retrievals)
self.__chat_history = self.__set_chat_history(max_token_limit=chat_max_tokens)
# PRIVATE METHODS #
def __set_llm_model(self, model_name = "gpt-3.5-turbo", temperature: float = 0.7):
return ChatOpenAI(model_name=model_name, temperature=temperature)
def __get_docs_list(self, docs_dir: str) -> list:
print("Carregando documentos...")
loader = DirectoryLoader(docs_dir,
recursive=True,
show_progress=True,
use_multithreading=True,
max_concurrency=4)
docs_list = loader.load_and_split()
return docs_list
def __set_retriever(self, k: int = 4):
# Milvus Vector Store
embeddings = OpenAIEmbeddings()
milvus_server.start()
vector_store = Milvus.from_documents(
self.__docs_list,
embedding=embeddings,
connection_args={"host": os.getenv("MILVUS_HOST"), "port": os.getenv("MILVUS_PORT")},
collection_name="personal_documents",
)
# Self-Querying Retriever
metadata_field_info = [
AttributeInfo(
name="source",
description="O caminho de diretórios onde se encontra o documento",
type="string",
),
]
document_content_description = "Documentos pessoais"
_retriever = SelfQueryRetriever.from_llm(
self.__model,
vector_store,
document_content_description,
metadata_field_info,
search_kwargs={"k": k}
)
return _retriever
def __set_chat_history(self, max_token_limit: int = 3097):
return ConversationTokenBufferMemory(llm=self.__model, max_token_limit=max_token_limit, return_messages=True)
# PUBLIC METHODS #
def ask(self, question: str) -> str:
prompt = ChatPromptTemplate.from_messages([
("system", "Você é um assistente responsável por responder perguntas sobre documentos. Responda a pergunta do usuário com um nível de detalhes razoável e baseando-se no(s) seguinte(s) documento(s) de contexto:\n\n{context}"),
MessagesPlaceholder(variable_name="chat_history"),
("user", "{input}"),
])
output_parser = StrOutputParser()
chain = prompt | self.__model | output_parser
answer = chain.invoke({
"input": question,
"chat_history": self.__chat_history.load_memory_variables({})['history'],
"context": self.__retriever.get_relevant_documents(question)
})
# Atualização do histórico de conversa
self.__chat_history.save_context({"input": question}, {"output": answer})
return answer