forked from saadgroup/TurboGenPY
-
Notifications
You must be signed in to change notification settings - Fork 0
/
synthetic_turbulence.lyx
891 lines (664 loc) · 18.1 KB
/
synthetic_turbulence.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
#LyX 2.1 created this file. For more info see http://www.lyx.org/
\lyxformat 474
\begin_document
\begin_header
\textclass article
\begin_preamble
\usepackage{txfonts}
\usepackage{mathptmx}
\end_preamble
\use_default_options false
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding iso8859-15
\fontencoding default
\font_roman times
\font_sans default
\font_typewriter cmtt
\font_math auto
\font_default_family rmdefault
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize 12
\spacing single
\use_hyperref false
\papersize default
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 1
\use_package esint 0
\use_package mathdots 0
\use_package mathtools 1
\use_package mhchem 2
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 2cm
\topmargin 2cm
\rightmargin 2cm
\bottommargin 2cm
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Synthetic Isotropic Turbulence based on a Specified Energy Spectrum
\end_layout
\begin_layout Author
Tony Saad
\end_layout
\begin_layout Abstract
Given a turbulent energy spectrum, the task is to generate an isotropic
turbulent velocity field that reproduces the input spectrum.
I will use Lars Davidson's
\begin_inset CommandInset citation
LatexCommand cite
key "davidson2008hybrid"
\end_inset
formulation for generating inlet turbulent data.
His method is easily extendable to three dimensions as well as different
resolutions in space.
\end_layout
\begin_layout Section
Formulation
\end_layout
\begin_layout Standard
We start with a generalized Fourier series for a real valued scalar function
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u=a_{0}+\sum_{m=1}^{M}a_{m}\cos(\frac{2\pi mx}{L})+b_{m}\sin(\frac{2\pi mx}{L})
\end{equation}
\end_inset
For simplicity, we set
\begin_inset Formula $k_{m}\equiv\frac{2\pi m}{L}$
\end_inset
as the
\begin_inset Formula $m^{\mbox{th}}$
\end_inset
wave number.
Also, if the mean of
\begin_inset Formula $f$
\end_inset
is known, we have
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\int_{0}^{L}u\,\text{d}x=a_{0}
\end{equation}
\end_inset
Hence, for a turbulent velocity field with zero mean (in space), we can
set
\begin_inset Formula $a_{0}=0$
\end_inset
.
At the outset, we have
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u=\sum_{m=1}^{M}a_{m}\cos(k_{m}x)+b_{m}\sin(k_{m}x)
\end{equation}
\end_inset
We now introduce the following changes
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
a_{m}=\hat{u}_{m}\cos(\psi_{m});\quad b_{m}=\hat{u}_{m}\sin(\psi_{m});\quad\hat{u}_{m}^{2}=a_{m}^{2}+b_{m}^{2},\quad\psi_{m}=\arctan(\frac{b_{m}}{a_{m}})
\end{equation}
\end_inset
then
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\begin{alignedat}{1}a_{m}\cos(k_{m}x)+b_{m}\sin(k_{m}x) & =\hat{u}_{m}\cos(\psi_{m})\cos(k_{m}x)+\hat{u}_{m}\sin(\psi_{m})\sin(k_{m}x)\\
& =\hat{u}_{m}\cos(k_{m}x-\psi_{m})
\end{alignedat}
\end{equation}
\end_inset
so that
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u=\sum_{m=1}^{M}\hat{u}_{m}\cos(k_{m}x-\psi_{m})
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
The extension to 3D follows
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u=\sum_{m=1}^{M}\hat{u}_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\varv=\sum_{m=1}^{M}\hat{\varv}_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
w=\sum_{m=1}^{M}\hat{w}_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})
\end{equation}
\end_inset
where
\begin_inset Formula $\mathbf{k}_{m}\equiv(k_{x,m},k_{y,m},k_{z,m})$
\end_inset
is the position vector in wave space and
\begin_inset Formula $\mathbf{x}\equiv(x,y,z)$
\end_inset
is the position vector in physical space.
Therefore,
\begin_inset Formula $\mathbf{k}_{m}\cdot\mathbf{x}_{m}=k_{x,m}x+k_{y,m}y+k_{z,m}z$
\end_inset
.
A condensed form is
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathbf{u}=\sum_{m=1}^{M}\hat{\mathbf{u}}_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})
\end{equation}
\end_inset
where
\begin_inset Formula $\hat{\mathbf{u}}_{m}\equiv(\hat{u}_{m},\hat{v}_{m},\hat{w}_{m})$
\end_inset
.
Continuity dictates that
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}+\frac{\partial w}{\partial z}=0
\end{equation}
\end_inset
This gives
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
-\sum_{m=1}^{m}\left(k_{x,m}\hat{u}_{m}+k_{y,m}\hat{v}_{m}+k_{z,m}\hat{w}_{m}\right)\sin(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})=0
\end{equation}
\end_inset
or
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\sum_{m}\mathbf{k}_{m}\cdot\hat{\mathbf{u}}_{m}\sin(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})=0\label{eq:continuity-continuous}
\end{equation}
\end_inset
This equation can be enforced by setting
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathbf{k}_{m}\cdot\hat{\mathbf{u}}_{m}=0,\;\forall\: m\in\{0,1,\cdots,M\}
\]
\end_inset
This means that the Fourier coefficients have different directions in wave
space.
We therefore write the Fourier coefficients as
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\hat{\mathbf{u}}_{m}\equiv q_{m}\boldsymbol{\sigma}_{m}\mid\mathbf{k}_{m}\cdot\boldsymbol{\sigma}_{m}=0
\end{equation}
\end_inset
where
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
is a unit vector computed such that
\begin_inset Formula $\mathbf{k}_{m}\cdot\boldsymbol{\sigma}_{m}=0$
\end_inset
at any point
\begin_inset Formula $\mathbf{x}$
\end_inset
.
Note that this is the original formulation presented in
\begin_inset CommandInset citation
LatexCommand cite
key "davidson2008hybrid"
\end_inset
.
While
\begin_inset CommandInset ref
LatexCommand formatted
reference "eq:continuity-continuous"
\end_inset
is true in the continuous sense, it becomes invalid when discretized leading
to a diverging velocity field.
I will show you how to fix this in the next paragraph.
\end_layout
\begin_layout Standard
The velocity vector at point
\begin_inset Formula $\mathbf{x}$
\end_inset
is now at hand
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\mathbf{u}(\mathbf{x})=\sum_{m=1}^{M}q_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})\boldsymbol{\sigma}_{m}
\end{equation}
\end_inset
The last step is to link
\begin_inset Formula $q_{m}$
\end_inset
to the energy spectrum.
This can be computed from
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
q_{m}=2\sqrt{E(k_{m})\Delta k}
\end{equation}
\end_inset
\end_layout
\begin_layout Section
Enforcing Continuity
\end_layout
\begin_layout Standard
Given an analytic vector field
\begin_inset Formula $\mathbf{u}$
\end_inset
such that
\begin_inset Formula $\nabla\cdot\mathbf{u}=0$
\end_inset
, we show here that this does not hold for the discrete continuity equation.
Since different codes use different discretization schemes for the dilatation
term (staggered vs collocated), one must first write the divergence formula
in the desired discrete form and then infer the condition that enforces
discrete divergence.
A classic example is the Taylor-Green vortex initialization.
This velocity field is given by
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u=\sin x\cos y
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\varv=-\cos x\sin y
\end{equation}
\end_inset
It is true that, for this velocity field,
\begin_inset Formula $\nabla\cdot\mathbf{u}=0$
\end_inset
because
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\nabla\cdot\mathbf{u}=\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}=\cos x\cos y-\cos x\cos y=0
\end{equation}
\end_inset
However, when used to initialize a discrete grid, the resulting discrete
continuity equation does not always hold true.
Take for instance the Taylor-Green vortex and initialize a staggered grid.
Continuity, to second order in space on a staggered grid implies
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}\approx\frac{u(x+\tfrac{\Delta x}{2},y)-u(x-\tfrac{\Delta x}{2},y)}{\Delta x}+\frac{\varv(x,y+\tfrac{\Delta y}{2})-\varv(x,y-\tfrac{\Delta y}{2})}{\Delta y}
\end{equation}
\end_inset
Then, using the formula for
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $\varv$
\end_inset
, e.g.
\begin_inset Formula $u(x+\tfrac{\Delta x}{2},y)=\sin(x+\tfrac{\Delta x}{2})\cos y$
\end_inset
, etc..., one recovers
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}\approx2\cos x\cos y\left[\frac{\sin\left(\frac{\Delta x}{2}\right)}{\Delta x}-\frac{\sin\left(\frac{\Delta y}{2}\right)}{\Delta y}\right]
\end{equation}
\end_inset
which is guaranteed to be zero when
\begin_inset Formula $\Delta x=\Delta y$
\end_inset
.
A nonuniform grid spacing will always result in a diverging initial condition.
The overall less that I'd like to convey here is that it is generally preferabl
e to operate with the discrete form of equations since those usually bring
up hidden issues that can be easily missed in the continuous sense.
\end_layout
\begin_layout Standard
Back to our isotropic velocity field, recall that
\begin_inset Formula
\begin{equation}
\mathbf{u}(\mathbf{x})=\sum_{m=1}^{M}q_{m}\cos(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})\boldsymbol{\sigma}_{m}
\end{equation}
\end_inset
Now, write the continuity equation in discrete form, assuming a staggered
grid, we have
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}+\frac{\partial w}{\partial z}\approx\frac{u(x+\tfrac{\Delta x}{2},y,z)-u(x-\tfrac{\Delta x}{2},y,z)}{\Delta x}+\frac{\varv(x,y+\tfrac{\Delta y}{2},z)-\varv(x,y-\tfrac{\Delta y}{2},z)}{\Delta y}+\frac{w(x,y,z+\tfrac{\Delta z}{2})-w(x,y,z-\tfrac{\Delta z}{2})}{\Delta z}
\end{equation}
\end_inset
Here, for example,
\begin_inset Formula
\begin{equation}
u(x+\tfrac{\Delta x}{2},y,z)=\sum_{m=1}^{M}q_{m}\cos(k_{m,x}(x+\tfrac{\Delta x}{2})+k_{m,y}y+k_{m,z}z-\psi_{m})\sigma_{m,x}
\end{equation}
\end_inset
Upon careful substitution and tedious trigonometric operations (which are
rendered begnin when using mathematica, bless Stephen Wolfram), we recover
the following
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}+\frac{\partial w}{\partial z}\approx-\sum_{m=1}^{M}2\left[\frac{\sigma_{m,x}}{\Delta x}\sin(\tfrac{1}{2}k_{m,x}\Delta x)+\frac{\sigma_{m,y}}{\Delta y}\sin(\tfrac{1}{2}k_{m,y}\Delta y)+\frac{\sigma_{m,z}}{\Delta z}\sin(\tfrac{1}{2}k_{m,z}\Delta z)\right]\sin(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})
\end{equation}
\end_inset
or, written in a more convenient form
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\frac{\partial u}{\partial x}+\frac{\partial\varv}{\partial y}+\frac{\partial w}{\partial z}\approx-\sum_{m=1}^{M}\boldsymbol{\sigma}_{m}\cdot\tilde{\mathbf{k}}_{m}\sin(\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m})\label{eq:continuity-discrete}
\end{equation}
\end_inset
where
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\tilde{\mathbf{k}}_{m}\equiv\frac{2}{\Delta x}\sin(\tfrac{1}{2}k_{m,x}\Delta x)\mathbf{i}+\frac{2}{\Delta y}\sin(\tfrac{1}{2}k_{m,y}\Delta y)\mathbf{j}+\frac{2}{\Delta z}\sin(\tfrac{1}{2}k_{m,z}\Delta z)\mathbf{k}
\end{equation}
\end_inset
A sufficient condition for the discrete continuity equation given in
\begin_inset CommandInset ref
LatexCommand formatted
reference "eq:continuity-discrete"
\end_inset
to be zero is to make
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\boldsymbol{\sigma}_{m}\cdot\tilde{\mathbf{k}}_{m}=0,\quad\forall m
\end{equation}
\end_inset
This means that instead of selecting
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
such that it is perpendicular to
\begin_inset Formula $\mathbf{k}_{m}$
\end_inset
(
\begin_inset Formula $\boldsymbol{\sigma}_{m}\cdot\mathbf{k}_{m}=0$
\end_inset
), we instead choose
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
to be perpendicular to
\begin_inset Formula $\tilde{\mathbf{k}}_{m}$
\end_inset
.
Interestingly, in the limit as the grid spacing approaches zero,
\begin_inset Formula $\tilde{\mathbf{k}}_{m}$
\end_inset
will approach
\begin_inset Formula $\mathbf{k}_{m}$
\end_inset
.
This is so cool!
\end_layout
\begin_layout Section
In Practice
\end_layout
\begin_layout Standard
\begin_inset Float figure
wide false
sideways false
status open
\begin_layout Plain Layout
\align center
\begin_inset Graphics
filename figures/pdf/angles.pdf
\end_inset
\begin_inset Caption Standard
\begin_layout Plain Layout
Angles associated with wave number
\begin_inset Formula $\mathbf{k}_{m}$
\end_inset
.
\end_layout
\end_inset
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Itemize
Specify the number of modes
\begin_inset Formula $M$
\end_inset
.
This will determine the Fourier representation of the velocity field at
every point in the spatial domain
\end_layout
\begin_layout Itemize
Compute or set a minimum wave number
\begin_inset Formula $k_{0}$
\end_inset
\end_layout
\begin_layout Itemize
Compute a maximum wave number
\begin_inset Formula $k_{\text{max }}=\frac{\pi}{\Delta x}$
\end_inset
.
For multiple dimensions, use
\begin_inset Formula $k_{\text{max}}=\max(\frac{\pi}{\Delta x},\frac{\pi}{\Delta y},\frac{\pi}{\Delta z})$
\end_inset
\end_layout
\begin_layout Itemize
Generate a list of
\begin_inset Formula $M$
\end_inset
modes:
\begin_inset Formula $k_{m}\equiv k(m)=k_{0}+\frac{k_{\text{max}}-k_{\text{0}}}{M}(m-1)$
\end_inset
.
Those will correspond to the magnitude of the vector
\begin_inset Formula $\mathbf{k}_{m}$
\end_inset
.
In other words,
\begin_inset Formula $k_{m}$
\end_inset
is the radius of a sphere.
\end_layout
\begin_layout Itemize
Generate four arrays of random numbers, each of which is of size M (those
will be needed next).
Those will correspond to the angles:
\begin_inset Formula $\theta_{m}$
\end_inset
,
\begin_inset Formula $\varphi_{m}$
\end_inset
,
\begin_inset Formula $\psi_{m}$
\end_inset
, and
\begin_inset Formula $\alpha_{m}$
\end_inset
.
\end_layout
\begin_layout Itemize
Compute the wave vectors.
To generate as much randomness as possible, we write the wave vector as
a function of two angles in 3D space.
This means
\begin_inset Newline newline
\end_inset
\begin_inset Formula
\begin{equation}
k_{x,m}=\sin(\theta_{m})\cos(\varphi_{m})k_{m}
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
k_{y,m}=\sin(\theta_{m})\sin(\varphi_{m})k_{m}
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
k_{x,m}=\cos(\theta_{m})k_{m}
\end{equation}
\end_inset
\end_layout
\begin_layout Itemize
Compute the unit vector
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
.
Note that
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
lies in a plane perpendicular to the vector
\begin_inset Formula $\mathbf{k}_{m}$
\end_inset
.
We choose the following
\begin_inset Newline newline
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{x,m}=\cos(\theta_{m})\cos(\varphi_{m})\cos(\alpha_{m})-\sin(\varphi_{m})\sin(\alpha_{m})
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{y,m}=\cos(\theta_{m})\sin(\varphi_{m})\cos(\alpha_{m})+\cos(\varphi_{m})\sin(\alpha_{m})
\end{equation}
\end_inset
\begin_inset Formula
\begin{equation}
\sigma_{z,m}=-\sin(\theta_{m})\cos(\alpha_{m})
\end{equation}
\end_inset
\end_layout
\begin_layout Itemize
To enforce continuity, compute vector
\begin_inset Formula $\tilde{\mathbf{k}}_{m}$
\end_inset
and make
\begin_inset Formula $\boldsymbol{\sigma}_{m}$
\end_inset
perpendicular to
\begin_inset Formula $\tilde{\mathbf{k}}_{m}$
\end_inset
.
\end_layout
\begin_layout Itemize
Once those quantities are computed, loop over the mesh.
For every point on the mesh, loop over all M modes.
For every mode, compute
\begin_inset Formula $q_{m}=2\sqrt{E(k_{m})\Delta k}$
\end_inset
and
\begin_inset Formula $\beta_{m}=\mathbf{k}_{m}\cdot\mathbf{x}-\psi_{m}$
\end_inset
.
Finally, construct the following summations (at every point
\begin_inset Formula $(x,y,z)$
\end_inset
you will have a summation of
\begin_inset Formula $M$
\end_inset
-modes)
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
u(x,y,z)=\sum_{n=1}^{M}q_{m}\cos(\beta_{m})\sigma_{x,m}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
\varv(x,y,z)=\sum_{n=1}^{M}q_{m}\cos(\beta_{m})\sigma_{y,m}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{equation}
w(x,y,z)=\sum_{n=1}^{M}q_{m}\cos(\beta_{m})\sigma_{z,m}
\end{equation}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset CommandInset bibtex
LatexCommand bibtex
bibfiles "references"
options "plain"
\end_inset
\end_layout
\end_body
\end_document