forked from google-research/robotics_transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transformer_network_test.py
229 lines (204 loc) · 9.15 KB
/
transformer_network_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for networks."""
from absl.testing import parameterized
from robotics_transformer import transformer_network
from robotics_transformer.transformer_network_test_set_up import BATCH_SIZE
from robotics_transformer.transformer_network_test_set_up import NAME_TO_INF_OBSERVATIONS
from robotics_transformer.transformer_network_test_set_up import NAME_TO_STATE_SPECS
from robotics_transformer.transformer_network_test_set_up import observations_list
from robotics_transformer.transformer_network_test_set_up import spec_names_list
from robotics_transformer.transformer_network_test_set_up import state_spec_list
from robotics_transformer.transformer_network_test_set_up import TIME_SEQUENCE_LENGTH
from robotics_transformer.transformer_network_test_set_up import TransformerNetworkTestUtils
import tensorflow as tf
from tf_agents.specs import tensor_spec
class TransformerNetworkTest(TransformerNetworkTestUtils):
# pylint:disable=g-complex-comprehension
@parameterized.named_parameters([{
'testcase_name': '_' + name,
'state_spec': spec,
'train_observation': obs,
} for (name, spec,
obs) in zip(spec_names_list(), state_spec_list(), observations_list())]
)
# pylint:enable=g-complex-comprehension
def testTransformerTrainLossCall(self, state_spec, train_observation):
network = transformer_network.TransformerNetwork(
input_tensor_spec=state_spec,
output_tensor_spec=self._action_spec,
time_sequence_length=TIME_SEQUENCE_LENGTH)
network.create_variables()
self.assertNotEmpty(network.variables)
network.set_actions(self._train_action)
network_state = tensor_spec.sample_spec_nest(
network.state_spec, outer_dims=[BATCH_SIZE])
output_actions, network_state = network(
train_observation, step_type=None, network_state=network_state)
expected_shape = [2, 3]
self.assertEqual(network.get_actor_loss().shape,
tf.TensorShape(expected_shape))
self.assertCountEqual(self._train_action.keys(), output_actions.keys())
# pylint:disable=g-complex-comprehension
@parameterized.named_parameters([{
'testcase_name': '_' + name,
'spec_name': name,
} for name in spec_names_list()])
# pylint:enable=g-complex-comprehension
def testTransformerInferenceLossCall(self, spec_name):
state_spec = NAME_TO_STATE_SPECS[spec_name]
observation = NAME_TO_INF_OBSERVATIONS[spec_name]
network = transformer_network.TransformerNetwork(
input_tensor_spec=state_spec,
output_tensor_spec=self._action_spec,
time_sequence_length=TIME_SEQUENCE_LENGTH,
action_order=[
'terminate_episode', 'world_vector', 'rotation_delta',
'gripper_closedness_action'
])
network.create_variables()
self.assertNotEmpty(network.variables)
network.set_actions(self._inference_action)
# inference currently only support batch size of 1
network_state = tensor_spec.sample_spec_nest(
network.state_spec, outer_dims=[1])
output_actions, network_state = network(
observation, step_type=None, network_state=network_state)
tf.debugging.assert_equal(network.get_actor_loss(), 0.0)
self.assertCountEqual(self._inference_action.keys(), output_actions.keys())
# pylint:disable=g-complex-comprehension
@parameterized.named_parameters([{
'testcase_name': '_' + name,
'state_spec': spec,
'train_observation': obs,
} for name, spec, obs in zip(spec_names_list(), state_spec_list(),
observations_list())])
# pylint:enable=g-complex-comprehension
def testTransformerLogging(self, state_spec, train_observation):
network = transformer_network.TransformerNetwork(
input_tensor_spec=state_spec,
output_tensor_spec=self._action_spec,
time_sequence_length=TIME_SEQUENCE_LENGTH,
action_order=[
'terminate_episode', 'world_vector', 'rotation_delta',
'gripper_closedness_action'
])
network.create_variables()
self.assertNotEmpty(network.variables)
network.set_actions(self._train_action)
network_state = tensor_spec.sample_spec_nest(
network.state_spec, outer_dims=[BATCH_SIZE])
_ = network(train_observation, step_type=None, network_state=network_state)
network.add_summaries(
train_observation,
network.get_aux_info(),
debug_summaries=True,
training=True)
# pylint:disable=g-complex-comprehension
@parameterized.named_parameters([{
'testcase_name': '_' + name,
'state_spec': spec,
} for name, spec in zip(spec_names_list(), state_spec_list())])
# pylint:enable=g-complex-comprehension
def testTransformerCausality(self, state_spec):
"""Tests the causality for the transformer.
Args:
state_spec: Which state spec to test the transformer with
"""
network = transformer_network.TransformerNetwork(
input_tensor_spec=state_spec,
output_tensor_spec=self._action_spec,
time_sequence_length=TIME_SEQUENCE_LENGTH)
network.create_variables()
self.assertNotEmpty(network.variables)
time_sequence_length = network._time_sequence_length
tokens_per_image = network._tokens_per_context_image
tokens_per_action = network._tokens_per_action
def _split_image_and_action_tokens(all_tokens):
image_start_indices = [(tokens_per_image + tokens_per_action) * k
for k in range(time_sequence_length)]
image_tokens = tf.stack(
[all_tokens[i:i + tokens_per_image] for i in image_start_indices],
axis=0)
action_start_indices = [i + tokens_per_image for i in image_start_indices]
action_tokens = [
tf.stack([
all_tokens[i:i + tokens_per_action] for i in action_start_indices
], 0)
]
image_tokens = tf.one_hot(image_tokens, network._token_embedding_size)
# Remove extra dimension before the end once b/254902773 is fixed.
shape = image_tokens.shape
# Add batch dimension.
image_tokens = tf.reshape(image_tokens,
[1] + shape[:-1] + [1] + shape[-1:])
return image_tokens, action_tokens
# Generate some random tokens for image and actions.
all_tokens = tf.random.uniform(
shape=[time_sequence_length * (tokens_per_image + tokens_per_action)],
dtype=tf.int32,
maxval=10,
minval=0)
context_image_tokens, action_tokens = _split_image_and_action_tokens(
all_tokens)
# Get the output tokens without any zeroed out input tokens.
output_tokens = network._transformer_call(
context_image_tokens=context_image_tokens,
action_tokens=action_tokens,
attention_mask=network._default_attention_mask,
batch_size=1,
training=False)[0]
for t in range(time_sequence_length *
(tokens_per_image + tokens_per_action)):
# Zero out future input tokens.
all_tokens_at_t = tf.concat(
[all_tokens[:t + 1],
tf.zeros_like(all_tokens[t + 1:])], 0)
context_image_tokens, action_tokens = _split_image_and_action_tokens(
all_tokens_at_t)
# Get the output tokens with zeroed out input tokens after t.
output_tokens_at_t = network._transformer_call(
context_image_tokens=context_image_tokens,
action_tokens=action_tokens,
attention_mask=network._default_attention_mask,
batch_size=1,
training=False)[0]
# The output token is unchanged if future input tokens are zeroed out.
self.assertAllEqual(output_tokens[:t + 1], output_tokens_at_t[:t + 1])
def testLossMasks(self):
self._define_specs()
self._create_agent()
image_tokens = 3
action_tokens = 2
self._agent._actor_network._time_sequence_length = 2
self._agent._actor_network._tokens_per_context_image = image_tokens
self._agent._actor_network._tokens_per_action = action_tokens
self._agent._actor_network._generate_masks()
self.assertAllEqual(
self._agent._actor_network._action_tokens_mask,
tf.constant([
image_tokens, image_tokens + 1, 2 * image_tokens + action_tokens,
2 * image_tokens + action_tokens + 1
], tf.int32))
self._agent._actor_network._generate_masks()
self.assertAllEqual(
self._agent._actor_network._action_tokens_mask,
tf.constant([
image_tokens, image_tokens + 1, 2 * (image_tokens) + action_tokens,
2 * (image_tokens) + action_tokens + 1
], tf.int32))
if __name__ == '__main__':
# Useful to enable if running with ipdb.
tf.config.run_functions_eagerly(True)
tf.test.main()