-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathnccl_backend.py
214 lines (197 loc) · 7.08 KB
/
nccl_backend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import numpy as np
import cupy
import torch.distributed as dist
from typing import List
def _type_torch_to_cupy(torch_type: torch.dtype):
# print(torch_type)
mappings = {
torch.uint8: cupy.cuda.nccl.NCCL_UINT8,
torch.int32: cupy.cuda.nccl.NCCL_INT32,
torch.int: cupy.cuda.nccl.NCCL_INT,
torch.float16: cupy.cuda.nccl.NCCL_FLOAT16,
torch.float32: cupy.cuda.nccl.NCCL_FLOAT32,
torch.float64: cupy.cuda.nccl.NCCL_FLOAT64,
torch.float: cupy.cuda.nccl.NCCL_FLOAT
}
return mappings[torch_type]
class NCCLCommunicator:
def __init__(self,
rank: int,
intra_gpu_rank: int,
world_size: int,
master_ip: str):
self.rank = rank
self.intra_gpu_rank = intra_gpu_rank
cupy.cuda.Device(self.intra_gpu_rank).use()
self.world_size = world_size
dist.init_process_group(backend='gloo', init_method=master_ip, world_size=world_size, rank=rank)
self.store = dist.distributed_c10d._get_default_store()
if self.rank == 0:
cuda_id = cupy.cuda.nccl.get_unique_id()
# print(cuda_id)
cuda_id_str = np.array(cuda_id).tobytes()
self.store.set('master-unique-id', cuda_id_str)
# print("Master put key ", cuda_id_str)
else:
cuda_id_str = self.store.get('master-unique-id')
# print("Slave get key", cuda_id_str)
comm_id = tuple(np.frombuffer(cuda_id_str, dtype=int))
# comm_id = cupy.cuda.nccl.get_unique_id()
# print(comm_id)
self.comm = cupy.cuda.nccl.NcclCommunicator(self.world_size, comm_id, self.rank)
@staticmethod
def barrier():
dist.barrier()
def send(self,
tensor: torch.Tensor,
dst: int,
stream=cupy.cuda.Stream.null):
self.comm.send(
tensor.data_ptr(),
torch.numel(tensor),
_type_torch_to_cupy(tensor.dtype),
dst,
stream.ptr
)
def recv(self,
tensor: torch.Tensor,
src: int,
stream=cupy.cuda.Stream.null):
self.comm.recv(
tensor.data_ptr(),
torch.numel(tensor),
_type_torch_to_cupy(tensor.dtype),
src,
stream.ptr
)
def broadcast(self,
tensor: torch.Tensor,
src: int,
stream=cupy.cuda.Stream.null):
self.comm.bcast(
tensor.data_ptr(),
torch.numel(tensor),
_type_torch_to_cupy(tensor.dtype),
src,
stream.ptr
)
def reduce(self,
tensor: torch.Tensor,
dst: int,
stream=cupy.cuda.Stream.null,
op=cupy.cuda.nccl.NCCL_SUM):
self.comm.reduce(
tensor.data_ptr(), # force it to be in-place.
tensor.data_ptr(),
torch.numel(tensor),
_type_torch_to_cupy(tensor.dtype),
op,
dst,
stream.ptr
)
def all_to_all(self,
output_tensor_list: List[torch.Tensor],
input_tensor_list: List[torch.Tensor],
stream=cupy.cuda.Stream.null):
assert len(output_tensor_list) == self.world_size and len(input_tensor_list) == self.world_size
cupy.cuda.nccl.groupStart()
for i in range(self.world_size):
self.send(input_tensor_list[i], i, stream)
self.recv(output_tensor_list[i], i, stream)
cupy.cuda.nccl.groupEnd()
def all_gather(self,
tensor: torch.Tensor,
output_tensor_list: List[torch.Tensor],
stream=cupy.cuda.Stream.null
):
assert len(output_tensor_list) == self.world_size
cupy.cuda.nccl.groupStart()
for i in range(self.world_size):
self.send(tensor, i, stream)
self.recv(output_tensor_list[i], i, stream)
cupy.cuda.nccl.groupEnd()
def all_reduce(self,
tensor: torch.Tensor,
stream=cupy.cuda.Stream.null,
op=cupy.cuda.nccl.NCCL_SUM):
self.comm.allReduce(
tensor.data_ptr(),
tensor.data_ptr(),
torch.numel(tensor),
_type_torch_to_cupy(tensor.dtype),
op,
stream.ptr
)
def all_reduce_opt(self,
tensor: torch.Tensor,
buffer: List[torch.Tensor],
stream=cupy.cuda.Stream.null):
# First do all-to-all
assert torch.numel(tensor.data) % self.world_size == 0
chunk_size = torch.numel(tensor.data) // self.world_size
t_type= _type_torch_to_cupy(tensor.dtype)
element_size = tensor.data.element_size()
print("Declared buffer.")
cupy.cuda.nccl.groupStart()
print("Tensor ptr:", tensor.data_ptr())
for i in range(self.world_size):
print("Tensor ptr offset:", tensor.data_ptr()+i*chunk_size*element_size)
self.comm.send(tensor.data_ptr()+i*chunk_size*element_size, chunk_size, t_type, i, stream.ptr)
self.comm.recv(buffer[i].data_ptr(), chunk_size, t_type, i, stream.ptr)
cupy.cuda.nccl.groupEnd()
print(buffer[0])
for i in range(1, self.world_size):
print(buffer[i])
buffer[0] += buffer[i]
cupy.cuda.nccl.groupStart()
for i in range(self.world_size):
self.comm.send(buffer[0].data_ptr(), chunk_size, t_type, i, stream.ptr)
self.comm.recv(tensor.data_ptr()+i*chunk_size*element_size, chunk_size, t_type, i, stream.ptr)
cupy.cuda.nccl.groupEnd()
def scatter(self,
tensor: torch.Tensor,
scatter_list: List[torch.Tensor],
src: int,
stream=cupy.cuda.Stream.null):
cupy.cuda.nccl.groupStart()
if self.rank == src:
for i in range(self.world_size):
if i != src:
self.send(
scatter_list[i],
i,
stream
)
else:
tensor.copy_(scatter_list[i])
else:
self.recv(
tensor,
src,
stream
)
cupy.cuda.nccl.groupEnd()
def gather(self,
tensor: torch.Tensor,
gather_list: List[torch.Tensor],
dst: int,
stream=cupy.cuda.Stream.null):
cupy.cuda.nccl.groupStart()
if self.rank == dst:
for i in range(self.world_size):
if i != dst:
self.recv(
gather_list[i],
i,
stream
)
else:
gather_list[i].copy_(tensor)
else:
self.send(
tensor,
dst,
stream
)
cupy.cuda.nccl.groupEnd()