DU-Bii module 6: Integrative Bioinformatics
- Web: https://du-bii.github.io/module-6-Integrative-Bioinformatics/2020/
- Github (sources): https://github.com/DU-Bii/module-6-Integrative-Bioinformatics/2020/
Topics | Trainers | Teaching material |
---|---|---|
Analyse multi-omique par factorisation multi-niveaux de matrices | Laura Cantini, Sébastien Déjean and Jérôme Mariette | Session 1 & 2 |
Network Analysis & Cytoscape | Anaïs Baudot | Session 3 |
Web semantique, représentation des connaissances | Alban Gaignard | Session 4 |
Network Inference & WGCNA | Costas Bouyioukos | Session 5 |
This course takes place in the 1-month training "Diplôme Universitaire en Bioinformatique Intégrative" (DU-Bii) organised by Université Paris-Diderot and the Institut Français de Bioinformatique (IFB).
All participants are encouraged to follow the two introductory videos and read the review in the Paris Diderot course "Moodle" page. https://moodlesupd.script.univ-paris-diderot.fr/mod/page/view.php?id=167920
Contenu | HTML | Rmd | R | |
---|---|---|---|---|
Presentation Laura Cantini | Slides | |||
Practical MOFA | html | Rmd | ||
Presentation Sébastien Dejean et Jérôme Mariette | Slides | |||
MixOmics | Slides | R | ||
Practical mixKernel | html | Rmd |
Teachers: Laura Cantini, Sébastien Déjean, Jérôme Mariette
Concepts:
- Integrative bioinformatics approaches and their application to cancer
- Motivation
- Which approach to answer which question (subsetting, modules, pathways) ?
- Main methodologies: networks, matrix factorisation - Principles of multi-level matrix factorisation (Sébastien Déjean)
- Kernel-based approaches (Jérôme Mariette)
Practicals:
- MOFA
- mixOmics
- JM tools (please specify)
Datasets:
- Chronic Lymphoblastic Leukemia (CLL)
- metagenomics data (Jérôme Mariette)
Teacher: Anaïs Baudot
-
Introduction to network sciences in biology
-
Practical with Cytoscape
- Basics on human interactome
- Keywords: interactome, regulome, network visualisation and topological analyses
- Practicals: Tuto
Teacher: Alban Gaignard
Teacher: Costas Bouyioukos
- Introduction to gene co-expression networks.
- Introduction to WGCNA and the concept of eigengenes.
- Introduction: inferring networks from *omics data, clustering for Gene Regulatory Networks.
- Slides: SLidesM6S5
A document to familiarise with the terminology of correlation networks and WGCNA can be found here
- Practical with R
- Inferrence of co-expression networks with the WGCNA package
The document containing the R code for the TP, together with explanations and output graphs can is here: Network_Inference_with_WGCNA.html
Conclusions and mentions of Inferelator and cMonkey, two network inference tools which combine RNA-seq and Chip-Seq data.
git clone [email protected]:DU-Bii/module-6-Integrative-Bioinformatics.git
git clone https://github.com/DU-Bii/module-6-Integrative-Bioinformatics.git
This content is released under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) license. See the bundled LICENSE file for details.
Ce contenu est mis à disposition selon les termes de la licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International (CC BY-SA 4.0). Consultez le fichier LICENSE pour plus de détails.