DU-Bii module 6: Integrative Bioinformatics
Topics | Trainers | Teaching material |
---|---|---|
Analyse multi-omique par factorisation multi-niveaux de matrices (MOFA) | Laura Cantini (helpers: Anaïs Baudot, Claire Lansonneur, Olivier Sand) | Session 1 |
Analyse multi-omique par factorisation multi-niveaux de matrices (mixOmics/mixKernel) | Sébastien Déjean and Jérôme Mariette (à distance) (helpers: Etienne Thévenot, Claire Lansonneur, Olivier Sand) | Session 2 |
Web semantique, représentation des connaissances | Alban Gaignard (helper: Olivier Sand) | Session 3 |
ProMetIS: : un exemple d’intégration de données protéomiques et métabolomiques | Etienne Thévenot (helpers: Camilo Broc, Olivier Sand) | Session 4 |
Network Analysis & Cytoscape | Anaïs Baudot (helpers: Costas Bouyioukos, Claire Lansonneur, Olivier Sand) | Session 5 |
Network Inference & WGCNA | Costas Bouyioukos (helpers: Anaïs Baudot, Claire Lansonneur, Olivier Sand) | Session 6 |
This course takes place in the 1-month training "Diplôme Universitaire en Bioinformatique Intégrative" (DU-Bii) organised by Université Paris-Diderot and the Institut Français de Bioinformatique (IFB).
Teacher: Laura Cantini
Concepts:
- Integrative bioinformatics approaches and their application to cancer
- Motivation
- Which approach to answer which question (subsetting, modules, pathways) ?
- Main methodologies: networks, matrix factorisation
Practical:
- MOFA
Datasets:
- Chronic Lymphoblastic Leukemia (CLL)
Teachers: Sébastien Déjean, Jérôme Mariette
Concepts:
- Principles of multi-level matrix factorisation (Sébastien Déjean)
- Kernel-based approaches (Jérôme Mariette)
Practical:
- mixOmics
- JM tools (please specify)
Datasets:
- Chronic Lymphoblastic Leukemia (CLL)
- metagenomics data (Jérôme Mariette)
Teacher: Alban Gaignard
Teacher: Etienne Thévenot
Teacher: Anaïs Baudot
- Introduction to network sciences in biology
- Practical with Cytoscape
- Basics on human interactome
- Keywords: interactome, regulome, network visualisation and topological analyses
- Practicals:
Teacher: Costas Bouyioukos
- Contents:
- Introduction to gene co-expression networks.
- Introduction to WGCNA and the concept of eigengenes.
- Introduction: inferring networks from *omics data, clustering for Gene Regulatory Networks.
- Slides: SLidesM6S5.
Before the TP: Must read this document to familiarise with the terminology of correlation networks and WGCNA.
-
Particulars please read here.
-
Practical with R
- Inferrence of co-expression network modules with the WGCNA package.
- Document containing all the R code for the TP Network Inference with WGCNA R and a notebook with explanations and output graphs Network Inference with WGCNA notebook.
- Anaïs Baudot, CNRS, Marseille
- Olivier Sand, CNRS, Lille
- Jacques van Helden, Institut Français de Bioinformatique, Aix-Marseille Université
- Laura Cantini
- Sébastien Déjean
- Jérôme Mariette
- Alban Gaignard
- Etienne Thévenot
- Costas Bouyioukos
- Claire Lansonneur
git clone [email protected]:DU-Bii/module-6-Integrative-Bioinformatics.git
git clone https://github.com/DU-Bii/module-6-Integrative-Bioinformatics.git
This content is released under the Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) license. See the bundled LICENSE file for details.
Ce contenu est mis à disposition selon les termes de la licence Creative Commons Attribution - Partage dans les Mêmes Conditions 4.0 International (CC BY-SA 4.0). Consultez le fichier LICENSE pour plus de détails.