-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
126 lines (102 loc) · 5.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import torch.optim as optim
import torch.nn as nn
import torch
import os
import torch.nn.functional as F
from model.dino_fss import HCCNet
# from model.dino_clip import HCCNet
from common.logger import Logger, AverageMeter
from common.evaluation import Evaluator
from common import utils, my_optim
from data.dataset import FSSDataset
import os
def train(epoch, model, dataloader, optimizer, training, dataset):
train.count = getattr(train, 'count', 0)
# Force randomness during training / freeze randomness during testing
utils.fix_randseed(None) if training else utils.fix_randseed(0)
model.module.train_mode() if training else model.module.eval()
average_meter = AverageMeter(dataloader.dataset)
for idx, batch in enumerate(dataloader):
batch = utils.to_cuda(batch)
# mask FSS training
logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1),
batch['support_masks'].squeeze(1))#, batch['class_name'])
# class-aware mask FSS training
# logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1),
# batch['support_masks'].squeeze(1), batch['class_name'])
pred_softmax = F.softmax(logit_mask, dim=1).detach().cpu()
pred_mask = F.interpolate(logit_mask, size=batch['query_img'].size()[-2:],
mode='bilinear', align_corners=True).argmax(dim=1)
loss = model.module.compute_objective(logit_mask, batch['query_mask'])
if training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
area_inter, area_union = Evaluator.classify_prediction(pred_mask, batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone())
average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50)
# Write evaluation results
average_meter.write_result('Training' if training else 'Validation', epoch)
avg_loss = utils.mean(average_meter.loss_buf)
miou, fb_iou = average_meter.compute_iou()
return avg_loss, miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='FoundationFSS Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='../Datasets_SSP')
parser.add_argument('--benchmark', type=str, default='pascal', choices=['pascal', 'coco', 'fss'])
parser.add_argument('--logpath', type=str, default='experiment/dinov2_fss/pascal0/')
parser.add_argument('--bsz', type=int, default=20)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--niter', type=int, default=300)
parser.add_argument('--nworker', type=int, default=8)
parser.add_argument('--fold', type=int, default=0, choices=[0, 1, 2, 3])
parser.add_argument('--resume', action='store_true')
parser.add_argument('--loadpath', type=str, default='')
parser.add_argument('--backbone', type=str, default='dino', choices=['vgg16', 'resnet50', 'dino'])
parser.add_argument('--img_size', type=int, default=420)
args = parser.parse_args()
Logger.initialize(args, training=True)
# Model initialization
model =HCCNet(args.backbone, False)
Logger.log_params(model)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model, device_ids = [0, 1], output_device=0)
else:
model = nn.DataParallel(model)
model.to(device)
# Helper classes (for training) initialization
optimizer = optim.Adam([{"params": model.parameters(), "lr": args.lr}])
Evaluator.initialize()
current_epoch = 0
if args.resume:
path = args.loadpath
checkpoint = torch.load(path)
current_epoch = checkpoint["epoch"]
model.load_state_dict(checkpoint['net'])
optimizer.load_state_dict(checkpoint['optimizer'])
model.train()
# Dataset initialization
FSSDataset.initialize(img_size=args.img_size, datapath=args.datapath, use_original_imgsize=False)
dataloader_trn, dataset_trn = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'trn')
dataloader_val, dataset_val = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'test')
best_val_miou = float('-inf')
best_val_loss = float('inf')
for epoch in range(current_epoch, args.niter):
trn_loss, trn_miou, trn_fb_iou = train(epoch, model, dataloader_trn, optimizer, dataset=dataset_trn, training=True)
with torch.no_grad():
val_loss, val_miou, val_fb_iou = train(epoch, model, dataloader_val, optimizer, dataset=dataset_val, training=False)
# Save the best model
if val_miou > best_val_miou:
best_val_miou = val_miou
Logger.save_model_miou(model, epoch, val_miou, optimizer)
Logger.tbd_writer.add_scalars('data/loss', {'trn_loss': trn_loss, 'val_loss': val_loss}, epoch)
Logger.tbd_writer.add_scalars('data/miou', {'trn_miou': trn_miou, 'val_miou': val_miou}, epoch)
Logger.tbd_writer.add_scalars('data/fb_iou', {'trn_fb_iou': trn_fb_iou, 'val_fb_iou': val_fb_iou}, epoch)
Logger.tbd_writer.flush()
Logger.tbd_writer.close()
Logger.info('==================== Finished Training ====================')