-
Notifications
You must be signed in to change notification settings - Fork 1
/
Compression_GPU.py
335 lines (293 loc) · 10.5 KB
/
Compression_GPU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
"""
. .
| Compression_GPU.py |
| Written by Dalen W. Brauner |
| Status: Unfinished |
* *
"""
# Builtin libs
import time, pickle
from math import sqrt, cos, pi
# Required libs
from numpy import matrix, array
from scipy import ndimage as image
# GPU libs
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
# Custom libs
from array_handler import arraymap
#
##
###
####
##### Core functions:
def main():
print "What is the filename?"
print "Windows:"
print "winter.png"
print "bird.png"
print "Linux Mint:"
print "./winter-wallpaper-24.png"
print "./bird.png"
i = image.imread(raw_input(''))
if (i.shape[0] %8 != 0) or (i.shape[1] %8 != 0):
raise TypeError("Requires an image whose size is a multiple of 8x8!")
print "What level of image quality would you prefer?\nPlease select an integer 1-25,"
print "1 being the greatest image quality but least compressed."
q = int(raw_input(''))
tt = 0
print "Seperating Colors...",
t0 = time.clock()
Colors = Split_RGB(i)
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
# 'Colors' should be a list of the Length*Width arrays for each color value
print "Splitting the image into 8x8 blocks...",
t0 = time.clock()
R_Blocks, G_Blocks, B_Blocks = map(Split_Blocks, Colors)
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
# Each '_Blocks' variable should be an array of 8x8 matricies, each containing
# the respective R, G or B pixel data for that 8x8 portion of the image
print "Calculating DCTs...",
t0 = time.clock()
R_DCTs = arraymap(Calc_DCT, R_Blocks, dtype=int, esize=2)
G_DCTs = arraymap(Calc_DCT, G_Blocks, dtype=int, esize=2)
B_DCTs = arraymap(Calc_DCT, B_Blocks, dtype=int, esize=2)
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
## print '\n Sample before DCT:'
## print R_Blocks[0,0]
## print '\n Sample after DCT:'
## print R_DCTs[0,0]
# Each '_DCTs' variable should be an array of the DCTs of said 8x8 matrices
print "Quantizing data...",
t0 = time.clock()
R_Quantized = Quantize(R_DCTs,q)
G_Quantized = Quantize(G_DCTs,q)
B_Quantized = Quantize(B_DCTs,q)
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
## print 'R_Quantized\n',R_Quantized[0]
## print 'G_Quantized\n',G_Quantized[0]
## print 'B_Quantized\n',B_Quantized[0]
# Each '_Quantized' variable should be an array of lists of each DCT
# reorganized in a lossy, zigzag fashion
print "Applying Run Width Algorithm...",
t0 = time.clock()
R_RunW = arraymap(Run_Width, R_Quantized)
G_RunW = arraymap(Run_Width, G_Quantized)
B_RunW = arraymap(Run_Width, B_Quantized)
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
# Each '_Quantized' variable should be an array of Run_Width() strings
print "Saving to file...",
t0 = time.clock()
# Original
#f = open(str(time.time())+'.compressed','w')
#Write_To(R_RunW, G_RunW, B_RunW, f.write)
# Pickle the array
#f = open(str(time.time())+'.compressed','wb')
#pickle.dump((R_RunW, G_RunW, B_RunW), f)
# Pickle the string
O = appendablestring()
filename = str(int(time.time()*10))+'.compressed'
f = open(filename,'wb')
Write_To(q, R_RunW, G_RunW, B_RunW, O.append)
pickle.dump(O.gimmie(), f)
f.close()
t1 = time.clock()
tt += (t1-t0)
print "took",(t1-t0),"seconds."
print "\nAll in all...",
print "everything took",tt,"seconds."
print "Filename:",filename
#
##
###
####
##### Stepping-stone functions:
def Split_RGB(i):
"""Returns an R, G and B matrix."""
new_i = i.swapaxes(0,2)
if new_i.shape[0] == 4:
R, G, B, Alpha = new_i
elif new_i.shape[0] == 3:
R, G, B = new_i
else:
raise TypeError("I'm afraid I don't recognize this image format.")
return (matrix(R), matrix(G), matrix(B))
def Split_YUV(i):
"""Returns a Y', U and V matrix. (Unused)"""
# Establish conversion constants
C = (.299, .587, .114, -.14713, -.28886, .436, .615, -.51499, -.10001)
# Prep YUV lists
Y, U, V = [], [], []
for x in xrange(i.shape[0]):
Y.append([])
U.append([])
V.append([])
for y in xrange(i.shape[1]):
R = int(i[x,y][0])
G = int(i[x,y][1])
B = int(i[x,y][2])
# Append to lists YUV
Y[x].append( R*C[0] + G*C[1] + B*C[2])
U[x].append( R*C[3] + G*C[4] + B*C[5])
V[x].append( R*C[6] + G*C[7] + B*C[8])
return( matrix(Y), matrix(U), matrix(V) )
def Split_Blocks(M):
"""Splits a Matrix into an array of 8x8 blocks"""
h = M.shape[0]/8
w = M.shape[1]/8
blocks = [[] for q in xrange(w)]
for y in xrange(w):
for x in xrange(h):
blocks[y].append(M[(x*8) : (x*8+8), (y*8) : (y*8+8)])
A = array(blocks)
return A
def Calc_DCT(M):
"""Given a square numpy matrix "M", returns its DCT."""
# Prevent modification of the original matrix
M = M.copy()
# Assure the matrix is square
N, width = M.shape
if N != width: raise TypeError("DCT() requires matrix argument to be square")
# Construct the Cosine Transform Matrix
first = 1.0/sqrt(N)
second = sqrt(2.0/N)
third = 1.0/(2.0*N)
C = matrix([[0 for j in xrange(N)] for i in xrange(N)],dtype='f')
# Correct the first few values
for i in xrange(N):
C[0,i] = first
# Calculate the rest
for i in xrange(N-1):
for j in xrange(N):
C[i+1,j] = second * cos( (2*j+1) *(i+1) *pi *third )
# Calculate the DCT
M = (C * M * C.T).round(0)
# Scale pixel values to be consistent with JPEG algorithm
M[0,0] -= 1024
return M
def Quantize(A,Q):
"""Given a numpy array of 8x8 matrices "A" and quality level "Q", returns
a numpy array of the same values in lists, zig-zagged and quantized."""
# Establishes the Quality Matrix and the Zigzag pattern
Qtrx = matrix([[(1 + (x + y + 1)*Q) for x in xrange(8)] for y in xrange(8)])
Zig = [(0,0),(0,1),(1,0),(2,0),(1,1),(0,2),(0,3),(1,2),(2,1),(3,0),
(4,0),(3,1),(2,2),(1,3),(0,4),(0,5),(1,4),(2,3),(3,2),(4,1),(5,0),
(6,0),(5,1),(4,2),(3,3),(2,4),(1,5),(0,6),(0,7),(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),
(7,0),(7,1),(6,2),(5,3),(4,4),(3,5),(2,6),(1,7),(2,7),(3,6),(4,5),(5,4),(6,3),(7,2),
(7,3),(6,4),(5,5),(4,6),(3,7),(4,7),(5,6),(6,5),(7,4),(7,5),(6,6),(5,7),(6,7),(7,6),
(7,7)]
# Creates a list to be returned as the new array
New = []
for x in xrange(A.shape[0]):
New.append([])
for y in xrange(A.shape[1]):
# For each item in the 8x8, the respective quantized value is appended to Zag
# This is done in 'zig-zag' order via the tuples in Zig
M = A[x,y]
Zag = []
Zag = [ M[tup[0],tup[1]] / float(Qtrx[tup[0],tup[1]]) for tup in Zig]
Zagg = map(int,Zag)
New[x].append(Zagg)
return array(New)
def Run_Width(values, debugging=True):
"""Given a list of values, returns a string of those values as characters,
with the number of zeroes that follow each value as a character after.
Values are re-incrimented by 128 so the majority of values are chr()-
-compatable."""
width = ''
v = 0
z = 0
try:
while v < len(values):
val = values[v] + 128
if val == 128:
z += 1
else:
# Add zeroes-character before adding other characters
if z != 0:
width += chr(128)
width += chr(z)
z = 0
# Check if the value is out of range, and continue
# to add the appropriate character and amount to the
# value until it is finally in range.
if val >= 255:
while val >= 255:
width += chr(255)
val -= 255
elif val <= 0:
while val <= 0:
width += chr(0)
val += 255
# Finally: Add the character.
width += chr(val)
v += 1
# If there are still zeroes to account for after exiting the loop...
if z != 0:
width += chr(128)
width += chr(z)
# Just in case something went wrong:
except ValueError:
print width
print values[v],val
print values
err = "Run_Width Error: " + str(values[v]+128) + " not chr()able."
raise ValueError(err)
# To help make sure everything is in working order:
if debugging:
if len(values) != 64:
print "Uhh, len(values) != 64."
print len(values),values
# \x80\x80 Is used to split on prior to decoding the final string
return width + chr(128) + chr(128)
def Write_To(Q, Red, Grn, Blu, write):
"""Given RGB and a file's write function, writes appropriate headers and
the contents of the array to the file."""
L, W = Red.shape
write(chr(Q))
write(chr(L))
write(chr(W))
arraymap(write,Red)
arraymap(write,Grn)
arraymap(write,Blu)
#
##
####
##### Helper functions:
class appendablestring(object):
"""For continuing usage of arraymap. The goal of this object is to provide a function that
serves to add the contents of a single argument to a string, similar to appending to a list.
Before this object existed, we simply wrote to a file instead. This worked fine, until we
discovered writing to a file added additional characters that showed up when loading.
This is not the ideal approach."""
def __init__(self):
self._string = ''
def append(self,stuff):
if type(stuff) != str:
try:
for thing in stuff:
self.append(thing)
except:
err = "You can only append strings to me, not "+str(type(stuff))+"!"
raise TypeError(err)
elif type(stuff) == type(''):
self._string += stuff
else:
print 'Um...?'
def gimmie(self):
return self._string
def printit(thing):
"""This is for passing 'print' to map or arraymap."""
print thing
if __name__ == "__main__": main()