diff --git a/docs/404.html b/docs/404.html deleted file mode 100644 index f9474c5..0000000 --- a/docs/404.html +++ /dev/null @@ -1,90 +0,0 @@ - - -
- - - - -preprocessing.Rmd
The first step in any cellular barcoding analysis is to extract
-barcode containing reads from high throughput sequencing datasets and
-count the number of each barcode within each sample. The
-bartools
package is optimised for use with SPLINTR lineage
-barcode libraries (See Fennell and
-Vassiliadis et al. Nature 2021) however the functions within can be
-adapted to other DNA barcoding methodologies that use randomised DNA
-barcodes.
In the current version, bartools
assumes that any
-barcoding experiment uses a known reference library of barcodes. Since
-DNA barcodes are generally introduced into cells using viral vectors,
-the plasmid pool used to generate the barcode virus represents the
-reference set of barcodes that can be present in an experiment. The
-primary step in any barcoding analysis is to determine which barcodes
-are present in this reference pool and at what proportion.
In the case of SPLINTR, barcodes take the following form:
-tgaccatgtacgattgactaNNSWSNNWSWNNSWSNNWSWNNSWSNNWSWNNSWSNNWSWNNSWSNNWSWNNSWSNNWSWtgctaatgcgtactg
-where lower case sequence represents upstream and downstream constant -regions that are critical for accurately retrieving barcodes from the -genomic DNA of cells.
-Load the bartools library
-
-library(bartools)
-#> Loading required package: edgeR
-#> Loading required package: limma
-#> Loading required package: ggplot2
Barcode information can be extracted from raw fastq files and -summarised into a table of counts per barcode as follows
-Firstly we define the expected barcode pattern and the upstream and
-downstream constant regions that flank true barcodes. And then extract
-reads containing this barcode pattern using the
-extractBarcodeReads
function
-pattern <- "([ACTG][ACTG][GC][AT][GC][ACTG][ACTG][AT][GC][AT]){3,6}"
-fastq <- system.file("extdata", "test_extract_75bp_single-end.fastq.gz", package = "bartools", mustWork = T)
-constant <- toupper("tgaccatgtacgattgacta")
-test.extract <- bartools::extractbartoolseads(infile = fastq,
- barcode_pattern = pattern,
- constant = constant,
- yieldSize = 1e6)
-test.extract
Following barcode extraction we make use of previously generated
-library of reference barcodes and map our extracted sequences to this
-reference using mapBarcodeReads
. True barcodes will align
-without mismatches. Reads containing sequencing errors or false barcode
-sequences that snuck through the extraction step will be filtered out
-here.
-test.map <- bartools::mapbartoolseads(reads = test.extract,
- bowtie_index = "../data/bowtie/index",
- mismatches = 1,
- threads = 1,
- prefix = "test_map")
-test.map
If a bowtie reference has not yet been generated we can specify
-reference_fasta
in place of bowtie_index
and
-it will be generated automatically.
-reference.fa <- system.file("extdata", "barcode_lib_reference_test.fasta", package = "bartools", mustWork = T)
-test.map <- bartools::mapBarcodeReads(reads = test.extract,
- bowtie_index = NULL,
- reference_fasta = reference.fa,
- mismatches = 1, # maximum 3 mismatches
- threads = 2,
- prefix = "test_map")
-test.map
mapBarcodeReads
counts the number of occurrences of each
-barcode and saves the output in a file. We can easily load and examine
-the final count data here.
-test.counts <- utils::read.delim("./test_map_counts.csv", header = T, sep = ",", row.names = 1)
-test.counts %>% tibble::rownames_to_column() %>% dplyr::arrange(dplyr::desc(mapped))
For large numbers of samples it can be cumbersome and time consuming -to process raw count data within R as shown above. It is more efficient -to process these samples and generate count tables using a pipeline that -can be distributed across HPC infrastructure
-We have developed BARtab, a Nextflow pipeline for the -preprocessing of DNA barcoding datasets from bulk and single-cell -experiments. The pipeline and associated running instructions can be -found at https://github.com/DaneVass/BARtab.
-
-sessionInfo()
-#> R version 4.2.2 (2022-10-31)
-#> Platform: aarch64-apple-darwin20 (64-bit)
-#> Running under: macOS Ventura 13.1
-#>
-#> Matrix products: default
-#> BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
-#> LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
-#>
-#> locale:
-#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
-#>
-#> attached base packages:
-#> [1] stats graphics grDevices utils datasets methods base
-#>
-#> other attached packages:
-#> [1] bartools_0.2.3 ggplot2_3.4.2 edgeR_3.40.2 limma_3.54.2
-#>
-#> loaded via a namespace (and not attached):
-#> [1] locfit_1.5-9.8 tidyselect_1.2.0 xfun_0.39 bslib_0.5.0
-#> [5] purrr_1.0.1 splines_4.2.2 lattice_0.21-8 colorspace_2.1-0
-#> [9] vctrs_0.6.3 generics_0.1.3 htmltools_0.5.5 mgcv_1.9-0
-#> [13] yaml_2.3.7 utf8_1.2.3 rlang_1.1.1 pkgdown_2.0.7
-#> [17] jquerylib_0.1.4 pillar_1.9.0 glue_1.6.2 withr_2.5.0
-#> [21] lifecycle_1.0.3 stringr_1.5.0 munsell_0.5.0 gtable_0.3.3
-#> [25] ragg_1.2.5 memoise_2.0.1 evaluate_0.21 knitr_1.43
-#> [29] permute_0.9-7 fastmap_1.1.1 parallel_4.2.2 fansi_1.0.4
-#> [33] Rcpp_1.0.11 scales_1.2.1 cachem_1.0.8 vegan_2.6-4
-#> [37] desc_1.4.2 jsonlite_1.8.7 ineq_0.2-13 systemfonts_1.0.4
-#> [41] fs_1.6.2 textshaping_0.3.6 digest_0.6.33 stringi_1.7.12
-#> [45] dplyr_1.1.2 grid_4.2.2 rprojroot_2.0.3 cli_3.6.1
-#> [49] tools_4.2.2 magrittr_2.0.3 sass_0.4.6 tibble_3.2.1
-#> [53] cluster_2.1.4 pkgconfig_2.0.3 Matrix_1.6-0 MASS_7.3-60
-#> [57] rmarkdown_2.23 rstudioapi_0.15.0 R6_2.5.1 nlme_3.1-162
-#> [61] compiler_4.2.2
quickstart.Rmd
Load the bartools library
-
-library(bartools)
## Loading required package: edgeR
-## Loading required package: limma
-## Loading required package: ggplot2
-Raw barcode count data can be thought of similarly to raw
-integer-based count data from other count based experiments such as
-RNA-sequencing. For these data types the edgeR
package
-provides an efficient DGEList
object structure to store
-sample counts and associated metadata. bartools
makes use
-of this object structure to store and process DNA barcode counts.
For this section we will make use of a hypothetical DNA barcoding -dataset based on recent unpublished data from the Dawson lab -investigating the response of acute myeloid leukaemia (AML) cells to a -novel class of MYST acetyltransferase inhibitor described recently in MacPherson et -al. Nature 2019.
-AML cells were cultured in vitro, barcoded using a -lentiviral based barcoding library called SPLINTR, and -transplanted into three groups of C57BL/6J mice with daily dosing of -MYST inhibitor at low or high dose or a corresponding vehicle control. -Barcode samples were harvested from the bone marrow of moribund mice and -sequenced for in technical replicate replicate.
-To follow along with this vignette the raw counts tables and sample -metadata are included in the bartools package.
-
-data(test.dge)
Counts objects defined above can be specified in a sample metadata
-sheet as shown below. This is the easiest way to generate a
-DGEList
object containing the count information and
-metadata of interest for a set of barcode sequencing samples. An example
-of this process is shown below.
-samplesheet <- read.csv(system.file("extdata", "test_sampletable.csv", package = "bartools", mustWork = T), header = T, stringsAsFactors = F)
-samplesheet
Load in the counts as specified in the samplesheet into a DGEList -object
-
-dge <- edgeR::readDGE(files = samplesheet, group = samplesheet$treatment, labels = samplesheet$sample, header = T)
This results in the creation of a DGEList object containing counts -and metadata information for each sample
-
-data(test.dge)
-test.dge
## An object of class "DGEList"
-## $samples
-## Sample Experiment Group PCR_Replicate Treatment group
-## T0-1 T0-1 test_01 T0 1 T0 T0
-## T0-2 T0-2 test_01 T0 2 T0 T0
-## S10-1 S10-1 test_01 10_High_dose 1 High_dose 10_High_dose
-## S10-2 S10-2 test_01 10_High_dose 2 High_dose 10_High_dose
-## S11-1 S11-1 test_01 11_Vehicle 1 Vehicle 11_Vehicle
-## lib.size norm.factors
-## T0-1 3584606 1
-## T0-2 3349340 1
-## S10-1 4114186 1
-## S10-2 4196458 1
-## S11-1 2907500 1
-## 33 more rows ...
-##
-## $counts
-## Samples
-## Tags T0-1 T0-2 S10-1 S10-2 S11-1 S11-2 S12-1 S12-2 S13-1 S13-2 S14-1 S14-2
-## BC_1 175 79 0 0 0 0 0 0 0 0 0 0
-## BC_13 1458 834 0 0 0 0 0 0 0 0 0 0
-## BC_99 1155 1554 0 0 0 0 0 0 0 0 0 0
-## BC_120 285 184 0 0 0 0 0 0 0 0 0 0
-## BC_351 0 0 0 0 0 0 0 0 0 0 0 0
-## Samples
-## Tags S15-1 S15-2 S16-1 S16-2 S17-1 S17-2 S18-1 S18-2 S1-1 S1-2 S2-1 S2-2
-## BC_1 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_13 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_99 0 0 0 0 0 0 0 0 105 205 0 0
-## BC_120 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_351 0 0 0 0 0 0 0 0 0 0 0 0
-## Samples
-## Tags S3-1 S3-2 S4-1 S4-2 S5-1 S5-2 S6-1 S6-2 S7-1 S7-2 S8-1 S8-2 S9-1 S9-2
-## BC_1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_99 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_120 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-## BC_351 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-## 1634 more rows ...
-We first want to ensure that we are working with clean data. We -remove barcodes that have no counts across all samples.
-
-# Remove rows with no data
-keeprows = rowSums(test.dge$counts) >= 1
-dge.filtered <- test.dge[keeprows,]
-dge.filtered.counts <- dge.filtered$counts
-dim(dge.filtered.counts)
## [1] 1490 38
-We then normalise samples to sequencing depth
-
-# Normalise each sample to counts per million
-dge.cpmnorm <- normaliseCounts(dge.filtered, method = "cpm", threshold = 1)
## Error in normaliseCounts(dge.filtered, method = "cpm", threshold = 1): method argument must be one of CPM, RLE, TMM, upperquartile or TMMwsp
-We can plot the raw and normalised sequencing depth to get an idea of -depth discrepancies between PCR replicates
-
-# raw counts per sample
-plotReadCounts(dge.filtered.counts, group = dge.filtered$samples$Treatment)
-# normalised counts per sample
-plotReadCounts(dge.cpmnorm, group = dge.filtered$samples$Treatment)
## Error in is.data.frame(x): object 'dge.cpmnorm' not found
-For lentiviral based barcoding experiments, such as this one, it is -common for the library to exhibit a degree of skewness based on the -cloning method. This means that some barcodes are represented in the -library more than others and so have a greater chance to be transduced -into multiple cells. Most experiments assume that each individual -barcode is transduced into only one cell, and that each cell is only -transduced with one barcode.This is ensured using a low multiplicity of -infection (MOI) transduction in which the likelihood that a cell is -transduced with one or more barcode containing virions follows a Poisson -distribution. With this in mind, it also can be useful to check the -total counts per barcode to identify bias in counts in sample -vs. frequency of barcode in reference library.
-
-# plot detected barcodes
-plotBarcodeCounts(dge.cpmnorm, log10 = F)
## Error in is.data.frame(x): object 'dge.cpmnorm' not found
-
-plotBarcodeCounts(dge.cpmnorm, log10 = T)
## Error in is.data.frame(x): object 'dge.cpmnorm' not found
-In this plot individual barcodes on the x-axis are ordered based on -their frequency in the library pool. An increased number of counts per -barcode toward the left hand side of the plot would be suggestive of -transduction bias, meaning that there are more reads on average -attributed to the more abundant barcodes in the library. And so, likely -multiple cells were transduced with the same barcode. We don’t see this -here suggesting that this is not a problem for this experiment.
-It is also important to ensure that individual samples are sequenced -to an appropriate depth as this ensures that the entire barcode -repertoire present in a sample is captured in the data. Sequencing -technical duplicates of a sample generated at the library PCR stage is a -good way to ensure this.
-In our experiment we have 9 samples total, each with two PCR -technical replicates. Here we correlate the barcode distributions for -each pair of technical replicates.
-
-samps <- unique(test.dge$samples$group)
-lapply(samps, function(x){
- df <- test.dge[,test.dge$samples$group %in% as.character(x)]
- plotBarcodeRegression(df, samp1 = colnames(df)[[1]], samp2 = colnames(df)[[2]])
-})
## [[1]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[2]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[3]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[4]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[5]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[6]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[7]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[8]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[9]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[10]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[11]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[12]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[13]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[14]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[15]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[16]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[17]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[18]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-##
-## [[19]]
-## `geom_smooth()` using formula = 'y ~ x'
-
-We fit a linear model to both technical replicates per sample and -plot the regression line. Note that we expect a very high correlation -because these are PCR duplicates of the same barcode pool. We can easily -get the correlation values between replicates
-
-corrs <- calcReplicateCorr(test.dge, group = test.dge$samples$Group, corr.thresh = 0.9)
## Warning in colnames(dge$samples) == group: longer object length is not a
-## multiple of shorter object length
-## Error in table(dge$samples[, group.pos]): nothing to tabulate
-
-corrs
## Error in eval(expr, envir, enclos): object 'corrs' not found
-
-which(corrs < 0.9)
## Error in which(corrs < 0.9): object 'corrs' not found
-Now that we know our samples are of good quality we can merge the PCR -replicate information. From this point onward its a good idea to -collapse our PCR replicates.
-
-dim(dge.filtered)
## [1] 1490 38
-Here we take the average of PCR technical replicates within each -sample
-
-dge.filtered.collapsed <- collapseReplicates(dge.filtered, groupby = dge.filtered$samples$Group, by = "mean", show_reps = F)
The result is a clean barcode sequencing dataset ready for further -investigation and visualisation.
-
-dim(dge.filtered.collapsed)
## [1] 1490 19
-
-head(dge.filtered.collapsed)
## An object of class "DGEList"
-## $samples
-## Sample Experiment Group PCR_Replicate Treatment
-## 1_High_dose S1-1 test_01 1_High_dose 1 High_dose
-## 10_High_dose S10-1 test_01 10_High_dose 1 High_dose
-## 11_Vehicle S11-1 test_01 11_Vehicle 1 Vehicle
-## 12_Vehicle S12-1 test_01 12_Vehicle 1 Vehicle
-## 13_Low_dose S13-1 test_01 13_Low_dose 1 Low_dose
-## group lib.size norm.factors
-## 1_High_dose 1_High_dose 3447629 1
-## 10_High_dose 10_High_dose 4114186 1
-## 11_Vehicle 11_Vehicle 2907500 1
-## 12_Vehicle 12_Vehicle 4202337 1
-## 13_Low_dose 13_Low_dose 4513559 1
-## 14 more rows ...
-##
-## $counts
-## Samples
-## Tags 1_High_dose 10_High_dose 11_Vehicle 12_Vehicle 13_Low_dose 14_Low_dose
-## BC_1 0 0 0 0 0 0
-## BC_13 0 0 0 0 0 0
-## BC_99 155 0 0 0 0 0
-## BC_120 0 0 0 0 0 0
-## BC_426 0 0 0 0 0 0
-## BC_430 0 0 0 0 0 0
-## Samples
-## Tags 15_Low_dose 16_Low_dose 17_High_dose 18_Vehicle 2_High_dose
-## BC_1 0 0 0 0 0
-## BC_13 0 0 0 0 0
-## BC_99 0 0 0 0 0
-## BC_120 0 0 0 0 0
-## BC_426 0 0 0 0 0
-## BC_430 0 0 0 413 0
-## Samples
-## Tags 3_High_dose 4_Vehicle 5_Low_dose 6_High_dose 7_Vehicle 8_Vehicle
-## BC_1 0 0 0 0 0 0
-## BC_13 0 0 0 0 0 0
-## BC_99 0 0 0 0 0 0
-## BC_120 0 0 0 0 0 0
-## BC_426 0 0 0 0 0 0
-## BC_430 0 13 0 0 0 0
-## Samples
-## Tags 9_Low_dose T0
-## BC_1 0 127
-## BC_13 0 1146
-## BC_99 0 1354
-## BC_120 0 234
-## BC_426 0 81
-## BC_430 0 1022
-bartools
includes a range of visualisation options for
-examining barcode-seq datasets.
Sometimes a visual depiction of the data is most suitable. Here -barcodes/tags are represented by bubbles aligned on a single plane. The -size of the bubbles reflects the percentage abundance of each barcode -within a sample
-
-plotBarcodeBubble(dge.filtered.collapsed$counts, proportion.cutoff = 10, labels = T)
Bubbleplots can also be ordered according to a particular sample -which can help with visual representation of large vs small clones.
-
-plotOrderedBubble(dge.filtered.collapsed$counts, proportion.cutoff = 10, labels = T, orderSample = "T0", colorDominant = T)
## Error in methods::is(counts): object 'counts' not found
-Barcodes that fail to meet a defined abundance threshold in any -sample can be greyed out
-
-plotOrderedBubble(dge.filtered.collapsed$counts, proportion.cutoff = 10, labels = T, orderSample = "T0", colorDominant = F)
## Error in methods::is(counts): object 'counts' not found
-Alternatively, we can focus in on the most abundant barcodes within a -set of samples to more easily observe how these change in frequency over -the course of an experiment.
-
-plotBarcodeHistogram(dge.filtered.collapsed$counts,
- sample = dge.filtered.collapsed$samples$Group[[1]],
- top = 50)
For timecourse experiments it is useful to visualise the kinetics of
-barcode diversity changes over time. In this instance we can use
-plotBarcodeTimeseries
to get an idea of the relative
-abundance of the top n barcodes in a sample relative to
-others.
-plotBarcodeTimeseries(dge.filtered.collapsed, top = 5)
## Using barcode as id variables
-
-A global level PCA analysis is a good way to get a high level -understanding of the similarities and differences between samples.
-
-plotBarcodePCA(dge.filtered.collapsed, intgroup = "Treatment")
-plotBarcodePCA(dge.filtered.collapsed[,dge.filtered.collapsed$samples$Treatment %in% c("T0","Vehicle","High_dose")], intgroup = "Treatment")
Another method of comparing abundance across samples is using a -heatmap. Here barcodes ranked among the top n most abundant within each -sample are indicated by an asterix. This heatmap shows high dose samples -are generally distinct from the low dose and vehicle group.
-
-plotBarcodeHeatmap(cpm(dge.filtered.collapsed$counts), N = 5)
Its important to not only be able to visualise the data but also -understand relationships between barcodes/tags at the data level
-The above plots give a global visualisation of the abundance of each -barcode within a sample however the compositional makeup can be obscured -by visualising the data in this way. it can be helpful to examine the -fraction of barcodes that comprise a sample. These plots calculate the -cumulative sum of a sample in relation to other samples defined by the -user.
-
-plotBarcodeCumSum(dge.filtered.collapsed$counts, sample1 = "T0", samples = colnames(dge.filtered.collapsed$counts)[1:5])
It is important to be able to determine which barcodes are most -abundant wihtin each sample. Bartools allows this to be easily -calculated according to an abundance threshold.
-
-top.bc <- getDominantBarcodes(dge.filtered.collapsed, pct.thresh = 5)
-top.bc
## $`1_High_dose`
-## [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234" "BC_400391"
-##
-## $`10_High_dose`
-## [1] "BC_8419" "BC_124796"
-##
-## $`11_Vehicle`
-## [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978"
-##
-## $`12_Vehicle`
-## [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755"
-##
-## $`13_Low_dose`
-## [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382"
-##
-## $`14_Low_dose`
-## [1] "BC_90135" "BC_388103" "BC_31610"
-##
-## $`15_Low_dose`
-## [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419"
-##
-## $`16_Low_dose`
-## [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-##
-## $`17_High_dose`
-## [1] "BC_183691" "BC_90135" "BC_400391"
-##
-## $`18_Vehicle`
-## [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_93485" "BC_70225"
-##
-## $`2_High_dose`
-## [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-##
-## $`3_High_dose`
-## [1] "BC_79755" "BC_142024" "BC_102160" "BC_183691"
-##
-## $`4_Vehicle`
-## [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-##
-## $`5_Low_dose`
-## [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607" "BC_31610"
-##
-## $`6_High_dose`
-## [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564"
-##
-## $`7_Vehicle`
-## [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485"
-##
-## $`8_Vehicle`
-## [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485"
-##
-## $`9_Low_dose`
-## [1] "BC_79755" "BC_4198" "BC_81579" "BC_118640" "BC_560839" "BC_345889"
-## [7] "BC_400391"
-##
-## $T0
-## [1] "BC_245016" "BC_121651"
-We can then use specific plots to visualise the dominance of specific -barcodes within and across samples. These plots show that both top -barcodes in the T0 sample were essentially extinguished by the high dose -treatment
-
-plotBarcodeBoxplot(dge.filtered.collapsed, barcodes = top.bc$T0, condition = c("T0", "Low_dose", "High_dose"))
## multiple barcodes given. No metadata group
-
-The above graphs demonstrate that relatively few barcodes can -sometimes comprise the majority of a sample’s clonality, particularly -following a selective event such as drug treatment. It is useful to -formally analyse this based on a desired percentile threshold. A common -threshold is the 95th percentile. This can eliminate small barcodes that -comprise the tail of the dataset and give a sense of how many clones -truly comprise each sample
-
-calcPercentileBarcodes(dge.filtered.collapsed, percentile = 0.95)
## $NumBarcodes
-## Sample NumBarcodes
-## 1 1_High_dose 15
-## 2 10_High_dose 3
-## 3 11_Vehicle 19
-## 4 12_Vehicle 14
-## 5 13_Low_dose 11
-## 6 14_Low_dose 6
-## 7 15_Low_dose 7
-## 8 16_Low_dose 19
-## 9 17_High_dose 5
-## 10 18_Vehicle 27
-## 11 2_High_dose 12
-## 12 3_High_dose 10
-## 13 4_Vehicle 25
-## 14 5_Low_dose 11
-## 15 6_High_dose 9
-## 16 7_Vehicle 16
-## 17 8_Vehicle 21
-## 18 9_Low_dose 19
-## 19 T0 596
-##
-## $TopBarcodes
-## $TopBarcodes$`1_High_dose`
-## [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234" "BC_400391"
-## [7] "BC_142112" "BC_94511" "BC_68847" "BC_142024" "BC_23241" "BC_47310"
-## [13] "BC_9141" "BC_5472" "BC_65104"
-##
-## $TopBarcodes$`10_High_dose`
-## [1] "BC_8419" "BC_124796" "BC_102160"
-##
-## $TopBarcodes$`11_Vehicle`
-## [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978" "BC_79755"
-## [7] "BC_159570" "BC_118640" "BC_31610" "BC_635211" "BC_257382" "BC_324711"
-## [13] "BC_1607" "BC_4531" "BC_327422" "BC_297704" "BC_194823" "BC_415460"
-## [19] "BC_140320"
-##
-## $TopBarcodes$`12_Vehicle`
-## [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755" "BC_31610"
-## [7] "BC_49629" "BC_118640" "BC_47726" "BC_78349" "BC_58978" "BC_245016"
-## [13] "BC_1607" "BC_329679"
-##
-## $TopBarcodes$`13_Low_dose`
-## [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382" "BC_172626" "BC_345889"
-## [7] "BC_53234" "BC_5472" "BC_79755" "BC_205581" "BC_17608"
-##
-## $TopBarcodes$`14_Low_dose`
-## [1] "BC_90135" "BC_388103" "BC_31610" "BC_58978" "BC_292962" "BC_159570"
-##
-## $TopBarcodes$`15_Low_dose`
-## [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419" "BC_316204" "BC_400391"
-## [7] "BC_23241"
-##
-## $TopBarcodes$`16_Low_dose`
-## [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-## [7] "BC_17608" "BC_257382" "BC_345889" "BC_94511" "BC_142112" "BC_142024"
-## [13] "BC_91412" "BC_58978" "BC_190202" "BC_4198" "BC_68847" "BC_389078"
-## [19] "BC_47726"
-##
-## $TopBarcodes$`17_High_dose`
-## [1] "BC_183691" "BC_90135" "BC_400391" "BC_31610" "BC_68847"
-##
-## $TopBarcodes$`18_Vehicle`
-## [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_93485" "BC_70225"
-## [7] "BC_79755" "BC_4564" "BC_124796" "BC_58978" "BC_8419" "BC_149935"
-## [13] "BC_68847" "BC_90135" "BC_4173" "BC_4469" "BC_172626" "BC_31610"
-## [19] "BC_383329" "BC_55960" "BC_62970" "BC_102160" "BC_244320" "BC_400391"
-## [25] "BC_135438" "BC_203989" "BC_133178"
-##
-## $TopBarcodes$`2_High_dose`
-## [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-## [7] "BC_388103" "BC_257382" "BC_68618" "BC_102160" "BC_4531" "BC_90135"
-##
-## $TopBarcodes$`3_High_dose`
-## [1] "BC_79755" "BC_142024" "BC_102160" "BC_183691" "BC_59493" "BC_345889"
-## [7] "BC_23361" "BC_70225" "BC_30946" "BC_159570"
-##
-## $TopBarcodes$`4_Vehicle`
-## [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-## [7] "BC_327422" "BC_36103" "BC_102160" "BC_81579" "BC_118640" "BC_135438"
-## [13] "BC_205581" "BC_1607" "BC_4564" "BC_91412" "BC_229324" "BC_560839"
-## [19] "BC_159570" "BC_468335" "BC_49397" "BC_203989" "BC_124796" "BC_8419"
-## [25] "BC_190202"
-##
-## $TopBarcodes$`5_Low_dose`
-## [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607" "BC_31610" "BC_23361"
-## [7] "BC_159570" "BC_93485" "BC_468335" "BC_81579" "BC_257382"
-##
-## $TopBarcodes$`6_High_dose`
-## [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564" "BC_400391" "BC_31610"
-## [7] "BC_1478" "BC_90135" "BC_388103"
-##
-## $TopBarcodes$`7_Vehicle`
-## [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485" "BC_124796"
-## [7] "BC_23544" "BC_8419" "BC_324711" "BC_159570" "BC_58978" "BC_90135"
-## [13] "BC_345889" "BC_4564" "BC_102160" "BC_400391"
-##
-## $TopBarcodes$`8_Vehicle`
-## [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485" "BC_363879" "BC_4531"
-## [7] "BC_205581" "BC_118640" "BC_79755" "BC_31610" "BC_1607" "BC_82758"
-## [13] "BC_194823" "BC_389078" "BC_251167" "BC_68847" "BC_77209" "BC_102160"
-## [19] "BC_4173" "BC_4564" "BC_94579"
-##
-## $TopBarcodes$`9_Low_dose`
-## [1] "BC_79755" "BC_4198" "BC_81579" "BC_118640" "BC_560839" "BC_345889"
-## [7] "BC_400391" "BC_1607" "BC_319105" "BC_35704" "BC_205581" "BC_90135"
-## [13] "BC_124796" "BC_142024" "BC_8419" "BC_561471" "BC_19146" "BC_68847"
-## [19] "BC_78912"
-##
-## $TopBarcodes$T0
-## [1] "BC_245016" "BC_121651" "BC_420967" "BC_108059" "BC_323670" "BC_9141"
-## [7] "BC_331193" "BC_119418" "BC_65104" "BC_17570" "BC_35704" "BC_92942"
-## [13] "BC_383329" "BC_1396" "BC_83680" "BC_24510" "BC_55858" "BC_38589"
-## [19] "BC_137495" "BC_446739" "BC_69627" "BC_313129" "BC_171385" "BC_280320"
-## [25] "BC_12367" "BC_221975" "BC_15782" "BC_310257" "BC_3618" "BC_67201"
-## [31] "BC_107789" "BC_36103" "BC_2596" "BC_215831" "BC_43535" "BC_69641"
-## [37] "BC_13611" "BC_16618" "BC_588849" "BC_294188" "BC_22306" "BC_141060"
-## [43] "BC_249402" "BC_428803" "BC_344050" "BC_25084" "BC_46538" "BC_175651"
-## [49] "BC_206193" "BC_205581" "BC_403084" "BC_56819" "BC_400391" "BC_16956"
-## [55] "BC_219379" "BC_19146" "BC_172626" "BC_18278" "BC_43128" "BC_47439"
-## [61] "BC_148563" "BC_114027" "BC_325065" "BC_62602" "BC_58978" "BC_252374"
-## [67] "BC_68847" "BC_262618" "BC_111272" "BC_224300" "BC_476380" "BC_289383"
-## [73] "BC_50136" "BC_202891" "BC_276866" "BC_521149" "BC_21018" "BC_550404"
-## [79] "BC_162898" "BC_255436" "BC_458543" "BC_168818" "BC_176946" "BC_425129"
-## [85] "BC_204266" "BC_103528" "BC_175871" "BC_83707" "BC_64584" "BC_105387"
-## [91] "BC_11643" "BC_34617" "BC_227720" "BC_72619" "BC_516753" "BC_168530"
-## [97] "BC_2040" "BC_556149" "BC_376665" "BC_18345" "BC_249161" "BC_345717"
-## [103] "BC_114040" "BC_24159" "BC_41692" "BC_248159" "BC_236596" "BC_166467"
-## [109] "BC_54442" "BC_206263" "BC_363714" "BC_56338" "BC_16754" "BC_30946"
-## [115] "BC_503475" "BC_11277" "BC_612467" "BC_67854" "BC_43673" "BC_160057"
-## [121] "BC_32325" "BC_7405" "BC_118831" "BC_418545" "BC_120596" "BC_5256"
-## [127] "BC_39281" "BC_258799" "BC_29284" "BC_85441" "BC_103714" "BC_37062"
-## [133] "BC_140320" "BC_20263" "BC_46524" "BC_321677" "BC_172412" "BC_139928"
-## [139] "BC_203520" "BC_105732" "BC_173736" "BC_13395" "BC_11391" "BC_142999"
-## [145] "BC_172238" "BC_79026" "BC_43123" "BC_128266" "BC_355420" "BC_415373"
-## [151] "BC_129519" "BC_3733" "BC_93485" "BC_40856" "BC_42612" "BC_289568"
-## [157] "BC_10454" "BC_38398" "BC_160158" "BC_32680" "BC_135438" "BC_346124"
-## [163] "BC_146666" "BC_42178" "BC_53234" "BC_356531" "BC_389078" "BC_635211"
-## [169] "BC_183401" "BC_132225" "BC_229995" "BC_102205" "BC_47726" "BC_564039"
-## [175] "BC_40516" "BC_45955" "BC_113839" "BC_102803" "BC_42310" "BC_8835"
-## [181] "BC_91412" "BC_15740" "BC_173674" "BC_44599" "BC_324711" "BC_519985"
-## [187] "BC_77030" "BC_350464" "BC_235128" "BC_151544" "BC_33699" "BC_474982"
-## [193] "BC_210529" "BC_217211" "BC_221056" "BC_187025" "BC_320233" "BC_7122"
-## [199] "BC_87047" "BC_76947" "BC_63846" "BC_560839" "BC_65130" "BC_2294"
-## [205] "BC_102160" "BC_273124" "BC_161563" "BC_389742" "BC_521485" "BC_145719"
-## [211] "BC_373901" "BC_162119" "BC_189813" "BC_17608" "BC_324953" "BC_320752"
-## [217] "BC_283335" "BC_67965" "BC_2865" "BC_242383" "BC_227308" "BC_346627"
-## [223] "BC_67233" "BC_672202" "BC_8324" "BC_211828" "BC_410172" "BC_495859"
-## [229] "BC_35659" "BC_199881" "BC_44600" "BC_377226" "BC_147006" "BC_41523"
-## [235] "BC_336794" "BC_26769" "BC_244320" "BC_183112" "BC_14377" "BC_7299"
-## [241] "BC_53380" "BC_10347" "BC_164378" "BC_806" "BC_20557" "BC_57621"
-## [247] "BC_389087" "BC_100344" "BC_408928" "BC_156353" "BC_154990" "BC_228994"
-## [253] "BC_33764" "BC_23522" "BC_4564" "BC_78349" "BC_10808" "BC_201293"
-## [259] "BC_81309" "BC_45652" "BC_123791" "BC_214604" "BC_2206" "BC_14492"
-## [265] "BC_146146" "BC_6093" "BC_421415" "BC_58144" "BC_167638" "BC_366637"
-## [271] "BC_207651" "BC_154519" "BC_4733" "BC_19353" "BC_326596" "BC_1764"
-## [277] "BC_86358" "BC_101581" "BC_23241" "BC_138900" "BC_11270" "BC_64945"
-## [283] "BC_37363" "BC_638624" "BC_195246" "BC_121663" "BC_672021" "BC_194823"
-## [289] "BC_206798" "BC_521264" "BC_12191" "BC_130431" "BC_462254" "BC_4531"
-## [295] "BC_22999" "BC_64931" "BC_214878" "BC_9340" "BC_350335" "BC_150291"
-## [301] "BC_196282" "BC_95934" "BC_211811" "BC_587139" "BC_199093" "BC_147380"
-## [307] "BC_228018" "BC_116921" "BC_514247" "BC_380559" "BC_141246" "BC_218093"
-## [313] "BC_88464" "BC_157906" "BC_145403" "BC_73098" "BC_61489" "BC_77101"
-## [319] "BC_266451" "BC_138737" "BC_201372" "BC_654016" "BC_444573" "BC_53219"
-## [325] "BC_57692" "BC_175957" "BC_12418" "BC_357846" "BC_14810" "BC_49226"
-## [331] "BC_175198" "BC_49044" "BC_539228" "BC_527469" "BC_181957" "BC_181554"
-## [337] "BC_91989" "BC_353112" "BC_130861" "BC_55675" "BC_10293" "BC_617554"
-## [343] "BC_346761" "BC_302238" "BC_426662" "BC_77187" "BC_19610" "BC_171953"
-## [349] "BC_217320" "BC_446649" "BC_29208" "BC_93884" "BC_20573" "BC_146322"
-## [355] "BC_221691" "BC_261055" "BC_3583" "BC_9626" "BC_6304" "BC_354350"
-## [361] "BC_13093" "BC_203989" "BC_114257" "BC_234390" "BC_249649" "BC_88099"
-## [367] "BC_322542" "BC_351660" "BC_52081" "BC_225019" "BC_596629" "BC_15448"
-## [373] "BC_528062" "BC_2430" "BC_324042" "BC_587343" "BC_67374" "BC_14484"
-## [379] "BC_83816" "BC_141114" "BC_318282" "BC_11055" "BC_45402" "BC_79755"
-## [385] "BC_357977" "BC_415903" "BC_115436" "BC_43206" "BC_50222" "BC_655329"
-## [391] "BC_147556" "BC_182320" "BC_31779" "BC_9322" "BC_162322" "BC_296283"
-## [397] "BC_381245" "BC_283541" "BC_67247" "BC_4198" "BC_31196" "BC_11152"
-## [403] "BC_61500" "BC_90135" "BC_47310" "BC_292962" "BC_82595" "BC_26258"
-## [409] "BC_99" "BC_94579" "BC_35283" "BC_238577" "BC_49397" "BC_363879"
-## [415] "BC_309303" "BC_12410" "BC_231962" "BC_7691" "BC_147063" "BC_302454"
-## [421] "BC_92584" "BC_31185" "BC_110945" "BC_144061" "BC_75688" "BC_70909"
-## [427] "BC_238160" "BC_491991" "BC_149347" "BC_195887" "BC_125634" "BC_1593"
-## [433] "BC_57794" "BC_207333" "BC_228333" "BC_316483" "BC_169627" "BC_52856"
-## [439] "BC_129559" "BC_67370" "BC_21535" "BC_515934" "BC_329007" "BC_275321"
-## [445] "BC_444761" "BC_13" "BC_516611" "BC_154696" "BC_129768" "BC_159570"
-## [451] "BC_103862" "BC_268745" "BC_9747" "BC_194092" "BC_2791" "BC_176231"
-## [457] "BC_57582" "BC_50311" "BC_48168" "BC_330625" "BC_413271" "BC_322219"
-## [463] "BC_179919" "BC_56489" "BC_257382" "BC_120505" "BC_472019" "BC_282868"
-## [469] "BC_164652" "BC_124624" "BC_355439" "BC_563624" "BC_430" "BC_15707"
-## [475] "BC_1977" "BC_17509" "BC_345889" "BC_473006" "BC_567519" "BC_26384"
-## [481] "BC_28938" "BC_245600" "BC_145103" "BC_81579" "BC_10190" "BC_248582"
-## [487] "BC_142112" "BC_576338" "BC_288976" "BC_90599" "BC_255928" "BC_454109"
-## [493] "BC_220827" "BC_35633" "BC_33035" "BC_62970" "BC_381050" "BC_14452"
-## [499] "BC_189854" "BC_329679" "BC_66948" "BC_82758" "BC_84350" "BC_228451"
-## [505] "BC_186267" "BC_257523" "BC_20281" "BC_170233" "BC_15652" "BC_41280"
-## [511] "BC_276301" "BC_25609" "BC_182092" "BC_186401" "BC_37116" "BC_14380"
-## [517] "BC_259621" "BC_171345" "BC_278096" "BC_567514" "BC_44350" "BC_131019"
-## [523] "BC_297704" "BC_165975" "BC_451991" "BC_370968" "BC_80020" "BC_212837"
-## [529] "BC_4173" "BC_97874" "BC_2762" "BC_143062" "BC_35459" "BC_115038"
-## [535] "BC_6453" "BC_163063" "BC_28077" "BC_23918" "BC_389378" "BC_222891"
-## [541] "BC_250471" "BC_56792" "BC_229036" "BC_170407" "BC_154806" "BC_38465"
-## [547] "BC_337697" "BC_230643" "BC_164579" "BC_146760" "BC_59243" "BC_557872"
-## [553] "BC_652798" "BC_127999" "BC_4061" "BC_22263" "BC_22981" "BC_66747"
-## [559] "BC_8838" "BC_23213" "BC_49060" "BC_29053" "BC_535770" "BC_345175"
-## [565] "BC_7076" "BC_29984" "BC_153858" "BC_5615" "BC_26097" "BC_147873"
-## [571] "BC_19557" "BC_19612" "BC_14131" "BC_100070" "BC_190202" "BC_125776"
-## [577] "BC_388103" "BC_29222" "BC_509872" "BC_561471" "BC_57889" "BC_168163"
-## [583] "BC_18218" "BC_294271" "BC_65912" "BC_4165" "BC_345888" "BC_8159"
-## [589] "BC_1534" "BC_15172" "BC_78760" "BC_23363" "BC_427925" "BC_65621"
-## [595] "BC_41997" "BC_109658"
-##
-##
-## $TopBarcodeCounts
-## $TopBarcodeCounts$`1_High_dose`
-## 1_High_dose
-## BC_79755 1107678
-## BC_102160 761271
-## BC_59493 435329
-## BC_23361 232003
-## BC_53234 222954
-## BC_400391 192477
-## BC_142112 187155
-## BC_94511 128591
-## BC_68847 62744
-## BC_142024 61392
-## BC_23241 49611
-## BC_47310 34916
-## BC_9141 34887
-## BC_5472 32110
-## BC_65104 31160
-##
-## $TopBarcodeCounts$`10_High_dose`
-## 10_High_dose
-## BC_8419 1993924
-## BC_124796 1680405
-## BC_102160 206154
-##
-## $TopBarcodeCounts$`11_Vehicle`
-## 11_Vehicle
-## BC_53234 676539
-## BC_205581 486994
-## BC_90135 325817
-## BC_172626 241604
-## BC_58978 182366
-## BC_79755 111942
-## BC_159570 105098
-## BC_118640 65182
-## BC_31610 63582
-## BC_635211 63026
-## BC_257382 60037
-## BC_324711 55954
-## BC_1607 55929
-## BC_4531 54568
-## BC_327422 32704
-## BC_297704 25038
-## BC_194823 24130
-## BC_415460 20811
-## BC_140320 17939
-##
-## $TopBarcodeCounts$`12_Vehicle`
-## 12_Vehicle
-## BC_389078 1405728
-## BC_159570 586842
-## BC_135438 260286
-## BC_500780 240675
-## BC_79755 227341
-## BC_31610 178619
-## BC_49629 137913
-## BC_118640 126942
-## BC_47726 123364
-## BC_78349 122342
-## BC_58978 106717
-## BC_245016 103055
-## BC_1607 101604
-## BC_329679 76624
-##
-## $TopBarcodeCounts$`13_Low_dose`
-## 13_Low_dose
-## BC_8419 1104437
-## BC_124796 1074874
-## BC_102160 790394
-## BC_257382 746244
-## BC_172626 109387
-## BC_345889 81047
-## BC_53234 69197
-## BC_5472 53875
-## BC_79755 53474
-## BC_205581 40089
-## BC_17608 39223
-##
-## $TopBarcodeCounts$`14_Low_dose`
-## 14_Low_dose
-## BC_90135 1914931
-## BC_388103 1415098
-## BC_31610 305126
-## BC_58978 173933
-## BC_292962 126389
-## BC_159570 79752
-##
-## $TopBarcodeCounts$`15_Low_dose`
-## 15_Low_dose
-## BC_1478 1163226
-## BC_94579 953114
-## BC_124796 492547
-## BC_8419 483327
-## BC_316204 95554
-## BC_400391 64143
-## BC_23241 43129
-##
-## $TopBarcodeCounts$`16_Low_dose`
-## 16_Low_dose
-## BC_53234 961560
-## BC_79755 689442
-## BC_140320 613980
-## BC_31610 353626
-## BC_248880 304109
-## BC_1478 286142
-## BC_17608 217539
-## BC_257382 191984
-## BC_345889 189430
-## BC_94511 141895
-## BC_142112 139280
-## BC_142024 111530
-## BC_91412 96804
-## BC_58978 76756
-## BC_190202 66260
-## BC_4198 51301
-## BC_68847 50082
-## BC_389078 40573
-## BC_47726 37815
-##
-## $TopBarcodeCounts$`17_High_dose`
-## 17_High_dose
-## BC_183691 2717363
-## BC_90135 1592156
-## BC_400391 596410
-## BC_31610 211787
-## BC_68847 152083
-##
-## $TopBarcodeCounts$`18_Vehicle`
-## 18_Vehicle
-## BC_49397 790751
-## BC_91412 431176
-## BC_159570 426867
-## BC_62602 276110
-## BC_93485 261381
-## BC_70225 254975
-## BC_79755 209422
-## BC_4564 153377
-## BC_124796 138207
-## BC_58978 129417
-## BC_8419 129121
-## BC_149935 116170
-## BC_68847 115439
-## BC_90135 110019
-## BC_4173 104414
-## BC_4469 100734
-## BC_172626 95167
-## BC_31610 91203
-## BC_383329 79083
-## BC_55960 77254
-## BC_62970 60999
-## BC_102160 54950
-## BC_244320 41598
-## BC_400391 37075
-## BC_135438 32576
-## BC_203989 23509
-## BC_133178 20108
-##
-## $TopBarcodeCounts$`2_High_dose`
-## 2_High_dose
-## BC_248880 1596729
-## BC_65104 1180121
-## BC_9141 1139782
-## BC_1478 706185
-## BC_31610 644411
-## BC_79755 385647
-## BC_388103 175121
-## BC_257382 160815
-## BC_68618 87664
-## BC_102160 62632
-## BC_4531 43062
-## BC_90135 35085
-##
-## $TopBarcodeCounts$`3_High_dose`
-## 3_High_dose
-## BC_79755 2325114
-## BC_142024 631337
-## BC_102160 500221
-## BC_183691 230313
-## BC_59493 179949
-## BC_345889 98351
-## BC_23361 87369
-## BC_70225 61458
-## BC_30946 55306
-## BC_159570 53497
-##
-## $TopBarcodeCounts$`4_Vehicle`
-## 4_Vehicle
-## BC_53234 600113
-## BC_58978 283022
-## BC_62602 231169
-## BC_68847 191550
-## BC_140320 184096
-## BC_79755 173832
-## BC_327422 164339
-## BC_36103 150193
-## BC_102160 122425
-## BC_81579 118058
-## BC_118640 110948
-## BC_135438 95015
-## BC_205581 82397
-## BC_1607 78418
-## BC_4564 76796
-## BC_91412 75495
-## BC_229324 51708
-## BC_560839 51599
-## BC_159570 51597
-## BC_468335 50798
-## BC_49397 41726
-## BC_203989 38296
-## BC_124796 31384
-## BC_8419 26856
-## BC_190202 22301
-##
-## $TopBarcodeCounts$`5_Low_dose`
-## 5_Low_dose
-## BC_561471 2049491
-## BC_118640 306629
-## BC_59493 257272
-## BC_1607 242144
-## BC_31610 176241
-## BC_23361 128368
-## BC_159570 45318
-## BC_93485 30275
-## BC_468335 25238
-## BC_81579 24984
-## BC_257382 24269
-##
-## $TopBarcodeCounts$`6_High_dose`
-## 6_High_dose
-## BC_79755 1313507
-## BC_8419 1120457
-## BC_124796 1013931
-## BC_4564 461928
-## BC_400391 93601
-## BC_31610 43251
-## BC_1478 33933
-## BC_90135 32480
-## BC_388103 29467
-##
-## $TopBarcodeCounts$`7_Vehicle`
-## 7_Vehicle
-## BC_53234 903928
-## BC_54442 695015
-## BC_142024 453623
-## BC_140320 340812
-## BC_93485 313117
-## BC_124796 187546
-## BC_23544 176555
-## BC_8419 171530
-## BC_324711 157126
-## BC_159570 110265
-## BC_58978 96686
-## BC_90135 88718
-## BC_345889 57693
-## BC_4564 56267
-## BC_102160 50723
-## BC_400391 40763
-##
-## $TopBarcodeCounts$`8_Vehicle`
-## 8_Vehicle
-## BC_142024 1166326
-## BC_90135 662506
-## BC_58978 308475
-## BC_93485 241349
-## BC_363879 186351
-## BC_4531 138174
-## BC_205581 128351
-## BC_118640 125295
-## BC_79755 112885
-## BC_31610 90763
-## BC_1607 89905
-## BC_82758 70527
-## BC_194823 48711
-## BC_389078 45367
-## BC_251167 45299
-## BC_68847 41855
-## BC_77209 39896
-## BC_102160 31578
-## BC_4173 25818
-## BC_4564 22920
-## BC_94579 20012
-##
-## $TopBarcodeCounts$`9_Low_dose`
-## 9_Low_dose
-## BC_79755 681795
-## BC_4198 416270
-## BC_81579 227482
-## BC_118640 194256
-## BC_560839 189001
-## BC_345889 175817
-## BC_400391 171811
-## BC_1607 128762
-## BC_319105 107294
-## BC_35704 99211
-## BC_205581 92979
-## BC_90135 56017
-## BC_124796 52960
-## BC_142024 44150
-## BC_8419 41231
-## BC_561471 35822
-## BC_19146 29471
-## BC_68847 28059
-## BC_78912 19369
-##
-## $TopBarcodeCounts$T0
-## T0
-## BC_245016 229791
-## BC_121651 217035
-## BC_420967 135919
-## BC_108059 104092
-## BC_323670 88710
-## BC_9141 71948
-## BC_331193 58746
-## BC_119418 50353
-## BC_65104 44928
-## BC_17570 44319
-## BC_35704 42046
-## BC_92942 40055
-## BC_383329 38560
-## BC_1396 36561
-## BC_83680 36463
-## BC_24510 35588
-## BC_55858 32109
-## BC_38589 30544
-## BC_137495 27922
-## BC_446739 26850
-## BC_69627 26818
-## BC_313129 23810
-## BC_171385 23135
-## BC_280320 22617
-## BC_12367 22481
-## BC_221975 21723
-## BC_15782 21679
-## BC_310257 19781
-## BC_3618 17819
-## BC_67201 17468
-## BC_107789 17251
-## BC_36103 15445
-## BC_2596 15022
-## BC_215831 14165
-## BC_43535 13541
-## BC_69641 13517
-## BC_13611 13429
-## BC_16618 13410
-## BC_588849 13050
-## BC_294188 12892
-## BC_22306 12639
-## BC_141060 12371
-## BC_249402 12341
-## BC_428803 11779
-## BC_344050 11654
-## BC_25084 11583
-## BC_46538 11346
-## BC_175651 11293
-## BC_206193 11236
-## BC_205581 10974
-## BC_403084 10962
-## BC_56819 10940
-## BC_400391 10850
-## BC_16956 10763
-## BC_219379 10737
-## BC_19146 10234
-## BC_172626 9948
-## BC_18278 9561
-## BC_43128 9537
-## BC_47439 9501
-## BC_148563 9476
-## BC_114027 9237
-## BC_325065 9181
-## BC_62602 9167
-## BC_58978 9000
-## BC_252374 8738
-## BC_68847 8599
-## BC_262618 8455
-## BC_111272 8364
-## BC_224300 8275
-## BC_476380 8220
-## BC_289383 8174
-## BC_50136 8154
-## BC_202891 8124
-## BC_276866 8112
-## BC_521149 8104
-## BC_21018 7902
-## BC_550404 7724
-## BC_162898 7650
-## BC_255436 7647
-## BC_458543 7621
-## BC_168818 7611
-## BC_176946 7577
-## BC_425129 7376
-## BC_204266 7372
-## BC_103528 7202
-## BC_175871 7145
-## BC_83707 7076
-## BC_64584 7057
-## BC_105387 6847
-## BC_11643 6519
-## BC_34617 6449
-## BC_227720 6426
-## BC_72619 6404
-## BC_516753 6327
-## BC_168530 6204
-## BC_2040 6176
-## BC_556149 6128
-## BC_376665 6061
-## BC_18345 5987
-## BC_249161 5846
-## BC_345717 5778
-## BC_114040 5767
-## BC_24159 5744
-## BC_41692 5676
-## BC_248159 5671
-## BC_236596 5595
-## BC_166467 5526
-## BC_54442 5514
-## BC_206263 5499
-## BC_363714 5403
-## BC_56338 5073
-## BC_16754 5025
-## BC_30946 5005
-## BC_503475 4938
-## BC_11277 4875
-## BC_612467 4863
-## BC_67854 4809
-## BC_43673 4805
-## BC_160057 4794
-## BC_32325 4782
-## BC_7405 4719
-## BC_118831 4679
-## BC_418545 4661
-## BC_120596 4648
-## BC_5256 4643
-## BC_39281 4628
-## BC_258799 4591
-## BC_29284 4553
-## BC_85441 4534
-## BC_103714 4532
-## BC_37062 4505
-## BC_140320 4505
-## BC_20263 4464
-## BC_46524 4425
-## BC_321677 4409
-## BC_172412 4394
-## BC_139928 4370
-## BC_203520 4366
-## BC_105732 4315
-## BC_173736 4310
-## BC_13395 4244
-## BC_11391 4182
-## BC_142999 4102
-## BC_172238 4071
-## BC_79026 4055
-## BC_43123 4027
-## BC_128266 4010
-## BC_355420 3989
-## BC_415373 3989
-## BC_129519 3975
-## BC_3733 3965
-## BC_93485 3963
-## BC_40856 3941
-## BC_42612 3934
-## BC_289568 3933
-## BC_10454 3890
-## BC_38398 3876
-## BC_160158 3828
-## BC_32680 3822
-## BC_135438 3785
-## BC_346124 3761
-## BC_146666 3735
-## BC_42178 3703
-## BC_53234 3698
-## BC_356531 3677
-## BC_389078 3674
-## BC_635211 3668
-## BC_183401 3652
-## BC_132225 3650
-## BC_229995 3579
-## BC_102205 3564
-## BC_47726 3537
-## BC_564039 3502
-## BC_40516 3499
-## BC_45955 3495
-## BC_113839 3469
-## BC_102803 3468
-## BC_42310 3435
-## BC_8835 3425
-## BC_91412 3394
-## BC_15740 3388
-## BC_173674 3386
-## BC_44599 3373
-## BC_324711 3368
-## BC_519985 3294
-## BC_77030 3285
-## BC_350464 3253
-## BC_235128 3226
-## BC_151544 3214
-## BC_33699 3181
-## BC_474982 3168
-## BC_210529 3162
-## BC_217211 3130
-## BC_221056 3130
-## BC_187025 3128
-## BC_320233 3119
-## BC_7122 3112
-## BC_87047 3102
-## BC_76947 3053
-## BC_63846 3009
-## BC_560839 2990
-## BC_65130 2989
-## BC_2294 2986
-## BC_102160 2954
-## BC_273124 2945
-## BC_161563 2940
-## BC_389742 2920
-## BC_521485 2920
-## BC_145719 2911
-## BC_373901 2905
-## BC_162119 2891
-## BC_189813 2890
-## BC_17608 2878
-## BC_324953 2871
-## BC_320752 2863
-## BC_283335 2856
-## BC_67965 2840
-## BC_2865 2822
-## BC_242383 2817
-## BC_227308 2815
-## BC_346627 2779
-## BC_67233 2767
-## BC_672202 2748
-## BC_8324 2739
-## BC_211828 2737
-## BC_410172 2726
-## BC_495859 2711
-## BC_35659 2695
-## BC_199881 2675
-## BC_44600 2666
-## BC_377226 2649
-## BC_147006 2639
-## BC_41523 2631
-## BC_336794 2621
-## BC_26769 2607
-## BC_244320 2607
-## BC_183112 2600
-## BC_14377 2590
-## BC_7299 2571
-## BC_53380 2558
-## BC_10347 2543
-## BC_164378 2532
-## BC_806 2530
-## BC_20557 2523
-## BC_57621 2521
-## BC_389087 2510
-## BC_100344 2483
-## BC_408928 2456
-## BC_156353 2437
-## BC_154990 2422
-## BC_228994 2422
-## BC_33764 2417
-## BC_23522 2415
-## BC_4564 2388
-## BC_78349 2381
-## BC_10808 2376
-## BC_201293 2355
-## BC_81309 2350
-## BC_45652 2344
-## BC_123791 2325
-## BC_214604 2325
-## BC_2206 2300
-## BC_14492 2283
-## BC_146146 2282
-## BC_6093 2271
-## BC_421415 2269
-## BC_58144 2264
-## BC_167638 2253
-## BC_366637 2253
-## BC_207651 2252
-## BC_154519 2237
-## BC_4733 2236
-## BC_19353 2226
-## BC_326596 2225
-## BC_1764 2173
-## BC_86358 2169
-## BC_101581 2156
-## BC_23241 2151
-## BC_138900 2149
-## BC_11270 2143
-## BC_64945 2139
-## BC_37363 2131
-## BC_638624 2120
-## BC_195246 2112
-## BC_121663 2104
-## BC_672021 2092
-## BC_194823 2090
-## BC_206798 2069
-## BC_521264 2068
-## BC_12191 2065
-## BC_130431 2055
-## BC_462254 2048
-## BC_4531 2034
-## BC_22999 2032
-## BC_64931 2030
-## BC_214878 2028
-## BC_9340 2024
-## BC_350335 2022
-## BC_150291 2015
-## BC_196282 1997
-## BC_95934 1991
-## BC_211811 1981
-## BC_587139 1952
-## BC_199093 1951
-## BC_147380 1942
-## BC_228018 1942
-## BC_116921 1940
-## BC_514247 1938
-## BC_380559 1931
-## BC_141246 1919
-## BC_218093 1914
-## BC_88464 1912
-## BC_157906 1906
-## BC_145403 1881
-## BC_73098 1878
-## BC_61489 1876
-## BC_77101 1863
-## BC_266451 1849
-## BC_138737 1834
-## BC_201372 1833
-## BC_654016 1816
-## BC_444573 1811
-## BC_53219 1808
-## BC_57692 1792
-## BC_175957 1786
-## BC_12418 1777
-## BC_357846 1775
-## BC_14810 1760
-## BC_49226 1752
-## BC_175198 1746
-## BC_49044 1744
-## BC_539228 1743
-## BC_527469 1740
-## BC_181957 1739
-## BC_181554 1738
-## BC_91989 1731
-## BC_353112 1729
-## BC_130861 1727
-## BC_55675 1723
-## BC_10293 1690
-## BC_617554 1682
-## BC_346761 1681
-## BC_302238 1676
-## BC_426662 1675
-## BC_77187 1669
-## BC_19610 1655
-## BC_171953 1655
-## BC_217320 1654
-## BC_446649 1642
-## BC_29208 1632
-## BC_93884 1629
-## BC_20573 1627
-## BC_146322 1627
-## BC_221691 1620
-## BC_261055 1610
-## BC_3583 1607
-## BC_9626 1597
-## BC_6304 1592
-## BC_354350 1589
-## BC_13093 1586
-## BC_203989 1584
-## BC_114257 1577
-## BC_234390 1563
-## BC_249649 1563
-## BC_88099 1560
-## BC_322542 1550
-## BC_351660 1549
-## BC_52081 1544
-## BC_225019 1536
-## BC_596629 1523
-## BC_15448 1522
-## BC_528062 1522
-## BC_2430 1518
-## BC_324042 1514
-## BC_587343 1514
-## BC_67374 1512
-## BC_14484 1496
-## BC_83816 1487
-## BC_141114 1487
-## BC_318282 1487
-## BC_11055 1484
-## BC_45402 1472
-## BC_79755 1472
-## BC_357977 1466
-## BC_415903 1465
-## BC_115436 1461
-## BC_43206 1458
-## BC_50222 1458
-## BC_655329 1444
-## BC_147556 1443
-## BC_182320 1438
-## BC_31779 1437
-## BC_9322 1436
-## BC_162322 1428
-## BC_296283 1425
-## BC_381245 1422
-## BC_283541 1418
-## BC_67247 1411
-## BC_4198 1409
-## BC_31196 1407
-## BC_11152 1404
-## BC_61500 1398
-## BC_90135 1379
-## BC_47310 1378
-## BC_292962 1373
-## BC_82595 1361
-## BC_26258 1360
-## BC_99 1354
-## BC_94579 1351
-## BC_35283 1345
-## BC_238577 1339
-## BC_49397 1323
-## BC_363879 1323
-## BC_309303 1307
-## BC_12410 1304
-## BC_231962 1301
-## BC_7691 1300
-## BC_147063 1293
-## BC_302454 1290
-## BC_92584 1281
-## BC_31185 1273
-## BC_110945 1266
-## BC_144061 1266
-## BC_75688 1264
-## BC_70909 1244
-## BC_238160 1229
-## BC_491991 1228
-## BC_149347 1222
-## BC_195887 1219
-## BC_125634 1217
-## BC_1593 1213
-## BC_57794 1213
-## BC_207333 1212
-## BC_228333 1211
-## BC_316483 1202
-## BC_169627 1201
-## BC_52856 1196
-## BC_129559 1188
-## BC_67370 1175
-## BC_21535 1174
-## BC_515934 1173
-## BC_329007 1172
-## BC_275321 1169
-## BC_444761 1166
-## BC_13 1146
-## BC_516611 1146
-## BC_154696 1145
-## BC_129768 1140
-## BC_159570 1140
-## BC_103862 1135
-## BC_268745 1128
-## BC_9747 1126
-## BC_194092 1118
-## BC_2791 1116
-## BC_176231 1110
-## BC_57582 1109
-## BC_50311 1103
-## BC_48168 1099
-## BC_330625 1095
-## BC_413271 1091
-## BC_322219 1080
-## BC_179919 1079
-## BC_56489 1077
-## BC_257382 1074
-## BC_120505 1046
-## BC_472019 1044
-## BC_282868 1038
-## BC_164652 1033
-## BC_124624 1031
-## BC_355439 1030
-## BC_563624 1029
-## BC_430 1022
-## BC_15707 1012
-## BC_1977 1010
-## BC_17509 1008
-## BC_345889 1007
-## BC_473006 1005
-## BC_567519 1002
-## BC_26384 996
-## BC_28938 995
-## BC_245600 992
-## BC_145103 991
-## BC_81579 990
-## BC_10190 987
-## BC_248582 983
-## BC_142112 982
-## BC_576338 976
-## BC_288976 972
-## BC_90599 968
-## BC_255928 968
-## BC_454109 958
-## BC_220827 948
-## BC_35633 943
-## BC_33035 937
-## BC_62970 935
-## BC_381050 935
-## BC_14452 933
-## BC_189854 931
-## BC_329679 931
-## BC_66948 930
-## BC_82758 927
-## BC_84350 922
-## BC_228451 921
-## BC_186267 917
-## BC_257523 917
-## BC_20281 916
-## BC_170233 915
-## BC_15652 910
-## BC_41280 910
-## BC_276301 908
-## BC_25609 906
-## BC_182092 895
-## BC_186401 892
-## BC_37116 890
-## BC_14380 887
-## BC_259621 886
-## BC_171345 872
-## BC_278096 872
-## BC_567514 870
-## BC_44350 863
-## BC_131019 861
-## BC_297704 857
-## BC_165975 855
-## BC_451991 855
-## BC_370968 850
-## BC_80020 845
-## BC_212837 845
-## BC_4173 843
-## BC_97874 836
-## BC_2762 834
-## BC_143062 832
-## BC_35459 830
-## BC_115038 826
-## BC_6453 825
-## BC_163063 824
-## BC_28077 821
-## BC_23918 816
-## BC_389378 814
-## BC_222891 812
-## BC_250471 808
-## BC_56792 805
-## BC_229036 803
-## BC_170407 800
-## BC_154806 798
-## BC_38465 797
-## BC_337697 797
-## BC_230643 795
-## BC_164579 794
-## BC_146760 792
-## BC_59243 791
-## BC_557872 789
-## BC_652798 783
-## BC_127999 782
-## BC_4061 779
-## BC_22263 779
-## BC_22981 778
-## BC_66747 778
-## BC_8838 775
-## BC_23213 770
-## BC_49060 770
-## BC_29053 768
-## BC_535770 762
-## BC_345175 758
-## BC_7076 755
-## BC_29984 749
-## BC_153858 748
-## BC_5615 747
-## BC_26097 744
-## BC_147873 742
-## BC_19557 741
-## BC_19612 740
-## BC_14131 737
-## BC_100070 735
-## BC_190202 734
-## BC_125776 733
-## BC_388103 733
-## BC_29222 728
-## BC_509872 727
-## BC_561471 724
-## BC_57889 719
-## BC_168163 716
-## BC_18218 705
-## BC_294271 705
-## BC_65912 699
-## BC_4165 695
-## BC_345888 691
-## BC_8159 687
-## BC_1534 686
-## BC_15172 686
-## BC_78760 686
-## BC_23363 685
-## BC_427925 685
-## BC_65621 682
-## BC_41997 681
-## BC_109658 681
-
-plotDetectedBarcodes(dge.filtered.collapsed, percentile = 1, plot = T, group = "Treatment")
-plotDetectedBarcodes(dge.filtered.collapsed, percentile = 0.95, plot = T, group = "Treatment")
These plots show that there are few clones that comprise the majority -of the dataset per mouse. Also, there are generally fewer clones present -in the high dose group compared to the vehicle or low dose groups.
-We can examine diversity in a few different ways. The most common are -Shannon, Simpson, Inverse Simpson and Gini. Each will be applicable in -different circumstances, however the Shannon diversity index is more -widely used to compare global diversity amongst populations of barcoded -cells.
-
-diversity <- calcDivIndexes(dge.filtered.collapsed$counts)
## Joining with `by = join_by(name)`
-
-diversity
## name shannon simpson invsimpson gini group
-## 1 1_High_dose 2.348595 0.8444003 6.426747 0.9944996 Group1
-## 2 10_High_dose 1.225780 0.6032511 2.520486 0.9979181 Group1
-## 3 11_Vehicle 2.651924 0.8814260 8.433552 0.9924681 Group1
-## 4 12_Vehicle 2.414033 0.8399949 6.249800 0.9938575 Group1
-## 5 13_Low_dose 2.019197 0.8131725 5.352531 0.9958395 Group1
-## 6 14_Low_dose 1.519874 0.6814167 3.138896 0.9975312 Group1
-## 7 15_Low_dose 1.832136 0.7746698 4.437931 0.9965920 Group1
-## 8 16_Low_dose 2.778791 0.9048391 10.508519 0.9918608 Group1
-## 9 17_High_dose 1.534413 0.6789847 3.115116 0.9974705 Group1
-## 10 18_Vehicle 3.153732 0.9327037 14.859650 0.9879949 Group1
-## 11 2_High_dose 2.256218 0.8510409 6.713251 0.9949786 Group1
-## 12 3_High_dose 1.798233 0.6916675 3.243252 0.9964293 Group1
-## 13 4_Vehicle 3.122387 0.9318059 14.664035 0.9884237 Group1
-## 14 5_Low_dose 1.704952 0.6350916 2.740414 0.9964065 Group1
-## 15 6_High_dose 1.855001 0.7799122 4.543641 0.9963006 Group1
-## 16 7_Vehicle 2.605078 0.8891045 9.017500 0.9931725 Group1
-## 17 8_Vehicle 2.599803 0.8583799 7.061143 0.9924983 Group1
-## 18 9_Low_dose 2.747539 0.8980367 9.807451 0.9919927 Group1
-## 19 T0 5.503885 0.9851023 67.124565 0.8199223 Group1
-
-qplot(diversity$name, diversity$shannon) + theme_bw() + coord_flip()
## Warning: `qplot()` was deprecated in ggplot2 3.4.0.
-## This warning is displayed once every 8 hours.
-## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
-## generated.
-
-We can also statistically test for barcodes / tags that are over / -underrepresented in a group of samples relative to another using the -internal edgeR framework. bartools contains a convenience wrapper for -this functionality
-
-diff.bc <- compareAbundance(dge.filtered.collapsed,
- condition = dge.filtered.collapsed$samples$Treatment,
- condition_names = c("Vehicle", "High_dose"))
## Error in compareAbundance(dge.filtered.collapsed, condition = dge.filtered.collapsed$samples$Treatment, : argument 2 matches multiple formal arguments
-
-diff.bc
## Error in eval(expr, envir, enclos): object 'diff.bc' not found
-
-plotAbundanceLines(dge.filtered.collapsed, condition = dge.filtered.collapsed$samples$group, condition_names = c("Vehicle","High_dose"), plot_type = 'counts')
-sessionInfo()
## R version 4.2.2 (2022-10-31)
-## Platform: aarch64-apple-darwin20 (64-bit)
-## Running under: macOS Ventura 13.1
-##
-## Matrix products: default
-## BLAS: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
-## LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
-##
-## locale:
-## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
-##
-## attached base packages:
-## [1] stats graphics grDevices utils datasets methods base
-##
-## other attached packages:
-## [1] bartools_0.2.3 ggplot2_3.4.2 edgeR_3.40.2 limma_3.54.2
-##
-## loaded via a namespace (and not attached):
-## [1] nlme_3.1-162 matrixStats_1.0.0 fs_1.6.2
-## [4] RColorBrewer_1.1-3 doParallel_1.0.17 rprojroot_2.0.3
-## [7] ggsci_3.0.0 tools_4.2.2 backports_1.4.1
-## [10] bslib_0.5.0 utf8_1.2.3 R6_2.5.1
-## [13] vegan_2.6-4 BiocGenerics_0.44.0 mgcv_1.9-0
-## [16] colorspace_2.1-0 permute_0.9-7 GetoptLong_1.0.5
-## [19] withr_2.5.0 tidyselect_1.2.0 compiler_4.2.2
-## [22] textshaping_0.3.6 cli_3.6.1 desc_1.4.2
-## [25] labeling_0.4.2 sass_0.4.6 scales_1.2.1
-## [28] pkgdown_2.0.7 systemfonts_1.0.4 stringr_1.5.0
-## [31] digest_0.6.33 rmarkdown_2.23 pkgconfig_2.0.3
-## [34] htmltools_0.5.5 fastmap_1.1.1 highr_0.10
-## [37] rlang_1.1.1 GlobalOptions_0.1.2 rstudioapi_0.15.0
-## [40] shape_1.4.6 jquerylib_0.1.4 farver_2.1.1
-## [43] generics_0.1.3 jsonlite_1.8.7 dplyr_1.1.2
-## [46] car_3.1-2 magrittr_2.0.3 Matrix_1.6-0
-## [49] S4Vectors_0.36.2 Rcpp_1.0.11 munsell_0.5.0
-## [52] fansi_1.0.4 abind_1.4-5 lifecycle_1.0.3
-## [55] stringi_1.7.12 yaml_2.3.7 carData_3.0-5
-## [58] MASS_7.3-60 plyr_1.8.8 grid_4.2.2
-## [61] parallel_4.2.2 forcats_1.0.0 crayon_1.5.2
-## [64] lattice_0.21-8 splines_4.2.2 circlize_0.4.15
-## [67] magick_2.7.4 locfit_1.5-9.8 knitr_1.43
-## [70] ComplexHeatmap_2.14.0 pillar_1.9.0 ggpubr_0.6.0
-## [73] rjson_0.2.21 ggsignif_0.6.4 stats4_4.2.2
-## [76] reshape2_1.4.4 codetools_0.2-19 glue_1.6.2
-## [79] evaluate_0.21 vctrs_0.6.3 png_0.1-8
-## [82] foreach_1.5.2 gtable_0.3.3 purrr_1.0.1
-## [85] tidyr_1.3.0 clue_0.3-64 cachem_1.0.8
-## [88] xfun_0.39 broom_1.0.5 rstatix_0.7.2
-## [91] ragg_1.2.5 tibble_3.2.1 iterators_1.0.14
-## [94] ineq_0.2-13 memoise_2.0.1 IRanges_2.32.0
-## [97] cluster_2.1.4
-Cellular barcoding is a powerful and widespread method to accurately track the progeny of a clone within a population of cells, enabling the dissection of biological phenomena at single cell resolution. However there remains a need for scalable and standardised open-source tools to pre-process and visualise cellular barcoding datasets. The bartools package is an R-based toolkit for the analysis of cellular barcoding information from high throughput sequencing datasets. The package consists of a suite of functions to annotate, analyse and plot DNA barcodes that are read out using common high throughput sequencing methodologies such as from Illumina machines. The bartools package is optimised for use with SPLINTR lineage barcode libraries however the functions within can be adapted to any cellular barcoding methodology that utiilses random DNA barcodes.
- - -You can install the development version of bartools from GitHub:
-
-if (!requireNamespace("devtools", quietly = TRUE)) {
- install.packages("devtools")
-}
-devtools::install_github("DaneVass/bartools", dependencies = TRUE)
See the Docs for full package documentation.
-We have also developed BARtab, a pre-processing pipeline to automate the extraction and enumeration of barcode reads from raw sequence files. See the github for
-The bartools package was developed by Dane Vassiliadis. Please post any issues at https://github.com/DaneVass/bartools/issues
-annotateBarcodeReads.Rd
Matches cells in a single cell experiment to detected DNA barcodes. -Dataframe returned will have all cells matched to a barcode -If there is no barcode matchable to a cell "not.detected" is returned -For cells that have multiple detected barcodes each barcode is returned separated by ';'
-calcDivIndexes.Rd
Takes a dataframe of barcode counts and computes shannon, -simpson, inverse simpson and gini coefficients for each -sample
-dataframe of raw or normalised counts with samples as columns and observations/barcodes as rows
calcPercentileBarcodes.Rd
Calculate barcodes comprising the Nth percentile for each sample & generate cumulative sum plots
-DGEList object containing raw or normalised barcode counts
desired percentile value
data(test.dge)
-calcPercentileBarcodes(test.dge, percentile = .95)
-#> $NumBarcodes
-#> Sample NumBarcodes
-#> 1 T0-1 593
-#> 2 T0-2 590
-#> 3 S10-1 3
-#> 4 S10-2 4
-#> 5 S11-1 19
-#> 6 S11-2 20
-#> 7 S12-1 14
-#> 8 S12-2 14
-#> 9 S13-1 10
-#> 10 S13-2 11
-#> 11 S14-1 6
-#> 12 S14-2 6
-#> 13 S15-1 7
-#> 14 S15-2 7
-#> 15 S16-1 19
-#> 16 S16-2 20
-#> 17 S17-1 5
-#> 18 S17-2 6
-#> 19 S18-1 27
-#> 20 S18-2 27
-#> 21 S1-1 14
-#> 22 S1-2 15
-#> 23 S2-1 12
-#> 24 S2-2 11
-#> 25 S3-1 10
-#> 26 S3-2 10
-#> 27 S4-1 25
-#> 28 S4-2 26
-#> 29 S5-1 11
-#> 30 S5-2 12
-#> 31 S6-1 9
-#> 32 S6-2 10
-#> 33 S7-1 16
-#> 34 S7-2 16
-#> 35 S8-1 20
-#> 36 S8-2 21
-#> 37 S9-1 19
-#> 38 S9-2 19
-#>
-#> $TopBarcodes
-#> $TopBarcodes$`T0-1`
-#> [1] "BC_245016" "BC_121651" "BC_420967" "BC_108059" "BC_323670" "BC_9141"
-#> [7] "BC_331193" "BC_119418" "BC_65104" "BC_17570" "BC_35704" "BC_383329"
-#> [13] "BC_92942" "BC_24510" "BC_1396" "BC_83680" "BC_55858" "BC_38589"
-#> [19] "BC_137495" "BC_69627" "BC_446739" "BC_171385" "BC_12367" "BC_280320"
-#> [25] "BC_15782" "BC_310257" "BC_221975" "BC_313129" "BC_67201" "BC_3618"
-#> [31] "BC_107789" "BC_36103" "BC_2596" "BC_69641" "BC_215831" "BC_16618"
-#> [37] "BC_249402" "BC_141060" "BC_13611" "BC_22306" "BC_588849" "BC_43535"
-#> [43] "BC_16956" "BC_175651" "BC_294188" "BC_46538" "BC_344050" "BC_25084"
-#> [49] "BC_56819" "BC_206193" "BC_428803" "BC_219379" "BC_400391" "BC_19146"
-#> [55] "BC_205581" "BC_148563" "BC_114027" "BC_172626" "BC_403084" "BC_62602"
-#> [61] "BC_224300" "BC_47439" "BC_18278" "BC_43128" "BC_68847" "BC_111272"
-#> [67] "BC_58978" "BC_162898" "BC_476380" "BC_262618" "BC_276866" "BC_252374"
-#> [73] "BC_550404" "BC_325065" "BC_202891" "BC_50136" "BC_255436" "BC_103528"
-#> [79] "BC_425129" "BC_168818" "BC_204266" "BC_176946" "BC_521149" "BC_105387"
-#> [85] "BC_227720" "BC_83707" "BC_64584" "BC_21018" "BC_458543" "BC_11643"
-#> [91] "BC_175871" "BC_556149" "BC_34617" "BC_166467" "BC_41692" "BC_72619"
-#> [97] "BC_168530" "BC_289383" "BC_2040" "BC_516753" "BC_24159" "BC_249161"
-#> [103] "BC_345717" "BC_54442" "BC_236596" "BC_248159" "BC_206263" "BC_376665"
-#> [109] "BC_18345" "BC_114040" "BC_612467" "BC_56338" "BC_363714" "BC_39281"
-#> [115] "BC_30946" "BC_32325" "BC_418545" "BC_103714" "BC_140320" "BC_120596"
-#> [121] "BC_503475" "BC_160057" "BC_16754" "BC_43673" "BC_173736" "BC_46524"
-#> [127] "BC_142999" "BC_11277" "BC_67854" "BC_258799" "BC_13395" "BC_37062"
-#> [133] "BC_38398" "BC_105732" "BC_139928" "BC_355420" "BC_40856" "BC_128266"
-#> [139] "BC_321677" "BC_203520" "BC_29284" "BC_172412" "BC_85441" "BC_20263"
-#> [145] "BC_118831" "BC_10454" "BC_5256" "BC_129519" "BC_11391" "BC_172238"
-#> [151] "BC_43123" "BC_42178" "BC_102205" "BC_346124" "BC_389078" "BC_42612"
-#> [157] "BC_93485" "BC_415373" "BC_3733" "BC_32680" "BC_474982" "BC_7405"
-#> [163] "BC_289568" "BC_229995" "BC_79026" "BC_45955" "BC_146666" "BC_183401"
-#> [169] "BC_356531" "BC_187025" "BC_42310" "BC_221056" "BC_132225" "BC_235128"
-#> [175] "BC_15740" "BC_160158" "BC_320233" "BC_8835" "BC_173674" "BC_53234"
-#> [181] "BC_91412" "BC_135438" "BC_373901" "BC_44599" "BC_87047" "BC_350464"
-#> [187] "BC_324711" "BC_40516" "BC_113839" "BC_162119" "BC_33699" "BC_635211"
-#> [193] "BC_346627" "BC_7122" "BC_806" "BC_63846" "BC_283335" "BC_151544"
-#> [199] "BC_273124" "BC_227308" "BC_47726" "BC_102803" "BC_244320" "BC_10347"
-#> [205] "BC_389742" "BC_2865" "BC_77030" "BC_65130" "BC_564039" "BC_519985"
-#> [211] "BC_76947" "BC_4564" "BC_521485" "BC_495859" "BC_35659" "BC_14377"
-#> [217] "BC_199881" "BC_147006" "BC_26769" "BC_100344" "BC_672202" "BC_146146"
-#> [223] "BC_320752" "BC_324953" "BC_217211" "BC_67965" "BC_210529" "BC_189813"
-#> [229] "BC_242383" "BC_560839" "BC_228994" "BC_389087" "BC_44600" "BC_20557"
-#> [235] "BC_10808" "BC_138900" "BC_81309" "BC_145719" "BC_58144" "BC_7299"
-#> [241] "BC_78349" "BC_102160" "BC_164378" "BC_211828" "BC_336794" "BC_53380"
-#> [247] "BC_14492" "BC_23241" "BC_57621" "BC_11270" "BC_41523" "BC_33764"
-#> [253] "BC_12191" "BC_17608" "BC_8324" "BC_183112" "BC_167638" "BC_2206"
-#> [259] "BC_123791" "BC_377226" "BC_195246" "BC_161563" "BC_67233" "BC_421415"
-#> [265] "BC_150291" "BC_408928" "BC_410172" "BC_121663" "BC_201293" "BC_156353"
-#> [271] "BC_45652" "BC_357846" "BC_199093" "BC_214878" "BC_6093" "BC_214604"
-#> [277] "BC_302238" "BC_521264" "BC_672021" "BC_2294" "BC_587139" "BC_638624"
-#> [283] "BC_86358" "BC_1764" "BC_366637" "BC_218093" "BC_201372" "BC_19353"
-#> [289] "BC_130431" "BC_22999" "BC_49044" "BC_154519" "BC_324042" "BC_37363"
-#> [295] "BC_154990" "BC_350335" "BC_194823" "BC_23522" "BC_141246" "BC_4531"
-#> [301] "BC_4733" "BC_654016" "BC_147380" "BC_196282" "BC_52081" "BC_207651"
-#> [307] "BC_380559" "BC_527469" "BC_353112" "BC_426662" "BC_655329" "BC_73098"
-#> [313] "BC_146322" "BC_596629" "BC_64945" "BC_462254" "BC_261055" "BC_145403"
-#> [319] "BC_61489" "BC_617554" "BC_228018" "BC_249649" "BC_211811" "BC_101581"
-#> [325] "BC_43206" "BC_326596" "BC_514247" "BC_88464" "BC_203989" "BC_206798"
-#> [331] "BC_19610" "BC_9626" "BC_116921" "BC_181554" "BC_79755" "BC_77101"
-#> [337] "BC_55675" "BC_83816" "BC_138737" "BC_322542" "BC_318282" "BC_444573"
-#> [343] "BC_9340" "BC_49226" "BC_57692" "BC_93884" "BC_181957" "BC_217320"
-#> [349] "BC_296283" "BC_3583" "BC_11055" "BC_95934" "BC_88099" "BC_35283"
-#> [355] "BC_67374" "BC_175957" "BC_266451" "BC_283541" "BC_14484" "BC_14810"
-#> [361] "BC_157906" "BC_354350" "BC_539228" "BC_61500" "BC_45402" "BC_234390"
-#> [367] "BC_415903" "BC_12418" "BC_238160" "BC_29208" "BC_91989" "BC_92584"
-#> [373] "BC_351660" "BC_381245" "BC_31196" "BC_47310" "BC_20573" "BC_64931"
-#> [379] "BC_2430" "BC_15448" "BC_94579" "BC_171953" "BC_9322" "BC_587343"
-#> [385] "BC_50222" "BC_53219" "BC_77187" "BC_7691" "BC_225019" "BC_238577"
-#> [391] "BC_6304" "BC_13093" "BC_154696" "BC_275321" "BC_75688" "BC_10293"
-#> [397] "BC_13" "BC_90135" "BC_357977" "BC_4198" "BC_147556" "BC_231962"
-#> [403] "BC_175198" "BC_144061" "BC_26258" "BC_114257" "BC_194092" "BC_31779"
-#> [409] "BC_268745" "BC_67247" "BC_82595" "BC_103862" "BC_149347" "BC_346761"
-#> [415] "BC_473006" "BC_49397" "BC_302454" "BC_207333" "BC_31185" "BC_115436"
-#> [421] "BC_124624" "BC_491991" "BC_309303" "BC_12410" "BC_228333" "BC_528062"
-#> [427] "BC_363879" "BC_70909" "BC_563624" "BC_11152" "BC_446649" "BC_129768"
-#> [433] "BC_129559" "BC_169627" "BC_21535" "BC_516611" "BC_57582" "BC_159570"
-#> [439] "BC_130861" "BC_48168" "BC_66948" "BC_257382" "BC_179919" "BC_15707"
-#> [445] "BC_17509" "BC_444761" "BC_57794" "BC_147063" "BC_52856" "BC_14452"
-#> [451] "BC_316483" "BC_186401" "BC_90599" "BC_245600" "BC_1977" "BC_99"
-#> [457] "BC_176231" "BC_472019" "BC_292962" "BC_221691" "BC_170233" "BC_182320"
-#> [463] "BC_381050" "BC_28938" "BC_67370" "BC_110945" "BC_195887" "BC_257523"
-#> [469] "BC_2762" "BC_255928" "BC_355439" "BC_33035" "BC_125634" "BC_430"
-#> [475] "BC_146760" "BC_164579" "BC_345889" "BC_142112" "BC_515934" "BC_141114"
-#> [481] "BC_20281" "BC_322219" "BC_248582" "BC_1593" "BC_9747" "BC_82758"
-#> [487] "BC_329007" "BC_567519" "BC_229036" "BC_50311" "BC_576338" "BC_189854"
-#> [493] "BC_25609" "BC_56489" "BC_10190" "BC_41280" "BC_370968" "BC_162322"
-#> [499] "BC_337697" "BC_6453" "BC_186267" "BC_222891" "BC_297704" "BC_145103"
-#> [505] "BC_81579" "BC_35633" "BC_170407" "BC_62970" "BC_120505" "BC_66747"
-#> [511] "BC_413466" "BC_329679" "BC_454109" "BC_37116" "BC_389378" "BC_4061"
-#> [517] "BC_163063" "BC_125776" "BC_38465" "BC_278096" "BC_288976" "BC_171345"
-#> [523] "BC_557872" "BC_127999" "BC_259621" "BC_314343" "BC_80020" "BC_228451"
-#> [529] "BC_282868" "BC_182092" "BC_56792" "BC_143062" "BC_219703" "BC_235649"
-#> [535] "BC_131019" "BC_561471" "BC_22981" "BC_567514" "BC_345175" "BC_345888"
-#> [541] "BC_7076" "BC_220827" "BC_23213" "BC_73196" "BC_2142" "BC_41997"
-#> [547] "BC_147873" "BC_19557" "BC_29053" "BC_230643" "BC_28077" "BC_22263"
-#> [553] "BC_29984" "BC_215667" "BC_69571" "BC_8838" "BC_275938" "BC_413636"
-#> [559] "BC_2791" "BC_26462" "BC_29222" "BC_4173" "BC_89937" "BC_8159"
-#> [565] "BC_413271" "BC_14131" "BC_59243" "BC_190202" "BC_294271" "BC_23918"
-#> [571] "BC_154806" "BC_214774" "BC_26384" "BC_57471" "BC_1534" "BC_451991"
-#> [577] "BC_15172" "BC_109658" "BC_483925" "BC_71820" "BC_330625" "BC_153858"
-#> [583] "BC_319910" "BC_459545" "BC_53645" "BC_84350" "BC_427925" "BC_75310"
-#> [589] "BC_5615" "BC_142652" "BC_50626" "BC_107381" "BC_8715"
-#>
-#> $TopBarcodes$`T0-2`
-#> [1] "BC_245016" "BC_121651" "BC_420967" "BC_108059" "BC_323670" "BC_9141"
-#> [7] "BC_331193" "BC_119418" "BC_65104" "BC_17570" "BC_35704" "BC_92942"
-#> [13] "BC_383329" "BC_83680" "BC_1396" "BC_24510" "BC_55858" "BC_38589"
-#> [19] "BC_313129" "BC_446739" "BC_137495" "BC_69627" "BC_171385" "BC_280320"
-#> [25] "BC_221975" "BC_12367" "BC_15782" "BC_3618" "BC_310257" "BC_107789"
-#> [31] "BC_67201" "BC_36103" "BC_215831" "BC_43535" "BC_2596" "BC_13611"
-#> [37] "BC_294188" "BC_588849" "BC_16618" "BC_69641" "BC_22306" "BC_428803"
-#> [43] "BC_403084" "BC_141060" "BC_205581" "BC_249402" "BC_206193" "BC_25084"
-#> [49] "BC_344050" "BC_400391" "BC_325065" "BC_219379" "BC_46538" "BC_289383"
-#> [55] "BC_56819" "BC_43128" "BC_175651" "BC_18278" "BC_172626" "BC_19146"
-#> [61] "BC_47439" "BC_252374" "BC_58978" "BC_21018" "BC_521149" "BC_16956"
-#> [67] "BC_262618" "BC_50136" "BC_202891" "BC_148563" "BC_62602" "BC_458543"
-#> [73] "BC_68847" "BC_114027" "BC_476380" "BC_276866" "BC_111272" "BC_176946"
-#> [79] "BC_255436" "BC_168818" "BC_550404" "BC_175871" "BC_204266" "BC_64584"
-#> [85] "BC_425129" "BC_83707" "BC_162898" "BC_224300" "BC_103528" "BC_34617"
-#> [91] "BC_72619" "BC_516753" "BC_105387" "BC_376665" "BC_18345" "BC_2040"
-#> [97] "BC_168530" "BC_11643" "BC_114040" "BC_227720" "BC_556149" "BC_7405"
-#> [103] "BC_249161" "BC_345717" "BC_363714" "BC_248159" "BC_24159" "BC_236596"
-#> [109] "BC_16754" "BC_206263" "BC_118831" "BC_54442" "BC_41692" "BC_503475"
-#> [115] "BC_5256" "BC_11277" "BC_67854" "BC_30946" "BC_43673" "BC_29284"
-#> [121] "BC_85441" "BC_160057" "BC_166467" "BC_56338" "BC_20263" "BC_258799"
-#> [127] "BC_172412" "BC_32325" "BC_321677" "BC_79026" "BC_37062" "BC_120596"
-#> [133] "BC_203520" "BC_418545" "BC_135438" "BC_139928" "BC_160158" "BC_635211"
-#> [139] "BC_612467" "BC_11391" "BC_564039" "BC_47726" "BC_105732" "BC_46524"
-#> [145] "BC_53234" "BC_103714" "BC_140320" "BC_289568" "BC_415373" "BC_102803"
-#> [151] "BC_39281" "BC_3733" "BC_172238" "BC_93485" "BC_13395" "BC_43123"
-#> [157] "BC_2294" "BC_146666" "BC_132225" "BC_40516" "BC_173736" "BC_42612"
-#> [163] "BC_356531" "BC_113839" "BC_519985" "BC_129519" "BC_77030" "BC_32680"
-#> [169] "BC_183401" "BC_128266" "BC_210529" "BC_161563" "BC_355420" "BC_217211"
-#> [175] "BC_324711" "BC_10454" "BC_91412" "BC_44599" "BC_40856" "BC_8835"
-#> [181] "BC_142999" "BC_173674" "BC_151544" "BC_229995" "BC_346124" "BC_42310"
-#> [187] "BC_102160" "BC_45955" "BC_15740" "BC_17608" "BC_350464" "BC_560839"
-#> [193] "BC_389078" "BC_76947" "BC_33699" "BC_145719" "BC_42178" "BC_67233"
-#> [199] "BC_38398" "BC_7122" "BC_410172" "BC_65130" "BC_189813" "BC_8324"
-#> [205] "BC_324953" "BC_521485" "BC_235128" "BC_63846" "BC_320752" "BC_87047"
-#> [211] "BC_67965" "BC_102205" "BC_242383" "BC_377226" "BC_389742" "BC_211828"
-#> [217] "BC_273124" "BC_23522" "BC_154990" "BC_320233" "BC_41523" "BC_183112"
-#> [223] "BC_221056" "BC_2865" "BC_672202" "BC_187025" "BC_326596" "BC_283335"
-#> [229] "BC_336794" "BC_44600" "BC_227308" "BC_156353" "BC_207651" "BC_408928"
-#> [235] "BC_495859" "BC_162119" "BC_64931" "BC_7299" "BC_53380" "BC_35659"
-#> [241] "BC_101581" "BC_4733" "BC_199881" "BC_57621" "BC_373901" "BC_164378"
-#> [247] "BC_147006" "BC_214604" "BC_45652" "BC_154519" "BC_64945" "BC_346627"
-#> [253] "BC_201293" "BC_366637" "BC_26769" "BC_474982" "BC_206798" "BC_9340"
-#> [259] "BC_19353" "BC_95934" "BC_20557" "BC_14377" "BC_6093" "BC_33764"
-#> [265] "BC_389087" "BC_130861" "BC_157906" "BC_462254" "BC_244320" "BC_1764"
-#> [271] "BC_123791" "BC_37363" "BC_86358" "BC_194823" "BC_211811" "BC_53219"
-#> [277] "BC_421415" "BC_100344" "BC_2206" "BC_78349" "BC_221691" "BC_116921"
-#> [283] "BC_228994" "BC_10347" "BC_514247" "BC_175198" "BC_266451" "BC_638624"
-#> [289] "BC_4531" "BC_10808" "BC_88464" "BC_228018" "BC_196282" "BC_81309"
-#> [295] "BC_167638" "BC_130431" "BC_346761" "BC_77101" "BC_672021" "BC_446649"
-#> [301] "BC_12418" "BC_22999" "BC_350335" "BC_14492" "BC_806" "BC_141114"
-#> [307] "BC_138737" "BC_10293" "BC_175957" "BC_14810" "BC_444573" "BC_521264"
-#> [313] "BC_147380" "BC_380559" "BC_539228" "BC_162322" "BC_91989" "BC_145403"
-#> [319] "BC_57692" "BC_61489" "BC_58144" "BC_4564" "BC_77187" "BC_121663"
-#> [325] "BC_73098" "BC_141246" "BC_195246" "BC_49226" "BC_171953" "BC_181957"
-#> [331] "BC_214878" "BC_182320" "BC_114257" "BC_146146" "BC_6304" "BC_181554"
-#> [337] "BC_13093" "BC_528062" "BC_587139" "BC_55675" "BC_23241" "BC_11270"
-#> [343] "BC_20573" "BC_29208" "BC_218093" "BC_654016" "BC_150291" "BC_292962"
-#> [349] "BC_217320" "BC_199093" "BC_138900" "BC_225019" "BC_12191" "BC_354350"
-#> [355] "BC_115436" "BC_99" "BC_93884" "BC_234390" "BC_527469" "BC_351660"
-#> [361] "BC_201372" "BC_3583" "BC_19610" "BC_587343" "BC_353112" "BC_15448"
-#> [367] "BC_357977" "BC_2430" "BC_617554" "BC_11152" "BC_31779" "BC_330625"
-#> [373] "BC_147556" "BC_88099" "BC_2791" "BC_67247" "BC_110945" "BC_50222"
-#> [379] "BC_147063" "BC_9626" "BC_1593" "BC_426662" "BC_413271" "BC_49044"
-#> [385] "BC_4198" "BC_164652" "BC_125634" "BC_322542" "BC_203989" "BC_67374"
-#> [391] "BC_45402" "BC_14484" "BC_195887" "BC_9322" "BC_415903" "BC_82595"
-#> [397] "BC_329007" "BC_146322" "BC_261055" "BC_90135" "BC_26258" "BC_363879"
-#> [403] "BC_515934" "BC_11055" "BC_49397" "BC_381245" "BC_309303" "BC_12410"
-#> [409] "BC_249649" "BC_318282" "BC_57794" "BC_67370" "BC_316483" "BC_31196"
-#> [415] "BC_357846" "BC_9747" "BC_83816" "BC_26384" "BC_52856" "BC_302454"
-#> [421] "BC_50311" "BC_282868" "BC_61500" "BC_238577" "BC_47310" "BC_31185"
-#> [427] "BC_283541" "BC_79755" "BC_231962" "BC_56489" "BC_120505" "BC_94579"
-#> [433] "BC_444761" "BC_70909" "BC_296283" "BC_15652" "BC_276301" "BC_322219"
-#> [439] "BC_169627" "BC_84350" "BC_596629" "BC_21535" "BC_52081" "BC_7691"
-#> [445] "BC_302238" "BC_165975" "BC_14380" "BC_144061" "BC_129559" "BC_491991"
-#> [451] "BC_43206" "BC_35459" "BC_228333" "BC_176231" "BC_75688" "BC_516611"
-#> [457] "BC_149347" "BC_220827" "BC_207333" "BC_159570" "BC_288976" "BC_81579"
-#> [463] "BC_44350" "BC_145103" "BC_35283" "BC_250471" "BC_97874" "BC_567519"
-#> [469] "BC_454109" "BC_355439" "BC_430" "BC_57582" "BC_48168" "BC_10190"
-#> [475] "BC_19612" "BC_92584" "BC_212837" "BC_129768" "BC_345889" "BC_115038"
-#> [481] "BC_228451" "BC_451991" "BC_179919" "BC_576338" "BC_655329" "BC_472019"
-#> [487] "BC_168163" "BC_35633" "BC_257382" "BC_535770" "BC_329679" "BC_248582"
-#> [493] "BC_62970" "BC_324042" "BC_18218" "BC_182092" "BC_142112" "BC_4173"
-#> [499] "BC_100070" "BC_259621" "BC_567514" "BC_103862" "BC_28938" "BC_325871"
-#> [505] "BC_49060" "BC_275321" "BC_186267" "BC_652798" "BC_1977" "BC_238160"
-#> [511] "BC_189854" "BC_37116" "BC_255928" "BC_268745" "BC_23918" "BC_131019"
-#> [517] "BC_171345" "BC_278096" "BC_13" "BC_82758" "BC_26097" "BC_65912"
-#> [523] "BC_41280" "BC_245600" "BC_509872" "BC_15707" "BC_17509" "BC_154696"
-#> [529] "BC_194092" "BC_28077" "BC_4165" "BC_154806" "BC_25609" "BC_33035"
-#> [535] "BC_1139" "BC_80020" "BC_388103" "BC_59243" "BC_20281" "BC_57889"
-#> [541] "BC_143062" "BC_218837" "BC_179997" "BC_90599" "BC_5615" "BC_23363"
-#> [547] "BC_352645" "BC_292621" "BC_153858" "BC_230643" "BC_297704" "BC_381050"
-#> [553] "BC_203210" "BC_8838" "BC_183115" "BC_257523" "BC_22263" "BC_56792"
-#> [559] "BC_163063" "BC_184732" "BC_563624" "BC_77131" "BC_78760" "BC_370968"
-#> [565] "BC_307924" "BC_331889" "BC_389378" "BC_29053" "BC_23213" "BC_428204"
-#> [571] "BC_500299" "BC_14452" "BC_124624" "BC_22981" "BC_98171" "BC_170233"
-#> [577] "BC_38465" "BC_47704" "BC_198370" "BC_14131" "BC_190202" "BC_278655"
-#> [583] "BC_6453" "BC_557872" "BC_31562" "BC_128748" "BC_29984" "BC_294176"
-#> [589] "BC_127999" "BC_796"
-#>
-#> $TopBarcodes$`S10-1`
-#> [1] "BC_8419" "BC_124796" "BC_102160"
-#>
-#> $TopBarcodes$`S10-2`
-#> [1] "BC_8419" "BC_124796" "BC_102160" "BC_68847"
-#>
-#> $TopBarcodes$`S11-1`
-#> [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978" "BC_79755"
-#> [7] "BC_159570" "BC_118640" "BC_31610" "BC_257382" "BC_1607" "BC_635211"
-#> [13] "BC_4531" "BC_324711" "BC_327422" "BC_297704" "BC_194823" "BC_415460"
-#> [19] "BC_140320"
-#>
-#> $TopBarcodes$`S11-2`
-#> [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978" "BC_79755"
-#> [7] "BC_159570" "BC_635211" "BC_118640" "BC_324711" "BC_31610" "BC_257382"
-#> [13] "BC_4531" "BC_1607" "BC_327422" "BC_297704" "BC_194823" "BC_415460"
-#> [19] "BC_62602" "BC_140320"
-#>
-#> $TopBarcodes$`S12-1`
-#> [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755" "BC_31610"
-#> [7] "BC_49629" "BC_78349" "BC_118640" "BC_47726" "BC_58978" "BC_1607"
-#> [13] "BC_245016" "BC_329679"
-#>
-#> $TopBarcodes$`S12-2`
-#> [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755" "BC_31610"
-#> [7] "BC_49629" "BC_118640" "BC_47726" "BC_78349" "BC_245016" "BC_58978"
-#> [13] "BC_1607" "BC_329679"
-#>
-#> $TopBarcodes$`S13-1`
-#> [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382" "BC_172626" "BC_345889"
-#> [7] "BC_53234" "BC_79755" "BC_5472" "BC_205581"
-#>
-#> $TopBarcodes$`S13-2`
-#> [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382" "BC_172626" "BC_345889"
-#> [7] "BC_53234" "BC_5472" "BC_79755" "BC_17608" "BC_205581"
-#>
-#> $TopBarcodes$`S14-1`
-#> [1] "BC_90135" "BC_388103" "BC_31610" "BC_58978" "BC_292962" "BC_159570"
-#>
-#> $TopBarcodes$`S14-2`
-#> [1] "BC_90135" "BC_388103" "BC_31610" "BC_58978" "BC_292962" "BC_159570"
-#>
-#> $TopBarcodes$`S15-1`
-#> [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419" "BC_316204" "BC_400391"
-#> [7] "BC_23241"
-#>
-#> $TopBarcodes$`S15-2`
-#> [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419" "BC_316204" "BC_400391"
-#> [7] "BC_23241"
-#>
-#> $TopBarcodes$`S16-1`
-#> [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-#> [7] "BC_17608" "BC_257382" "BC_345889" "BC_94511" "BC_142112" "BC_142024"
-#> [13] "BC_91412" "BC_58978" "BC_190202" "BC_4198" "BC_68847" "BC_389078"
-#> [19] "BC_47726"
-#>
-#> $TopBarcodes$`S16-2`
-#> [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-#> [7] "BC_17608" "BC_257382" "BC_345889" "BC_94511" "BC_142112" "BC_142024"
-#> [13] "BC_91412" "BC_58978" "BC_190202" "BC_68847" "BC_4198" "BC_389078"
-#> [19] "BC_47726" "BC_205581"
-#>
-#> $TopBarcodes$`S17-1`
-#> [1] "BC_183691" "BC_90135" "BC_400391" "BC_31610" "BC_68847"
-#>
-#> $TopBarcodes$`S17-2`
-#> [1] "BC_183691" "BC_90135" "BC_400391" "BC_31610" "BC_68847" "BC_53234"
-#>
-#> $TopBarcodes$`S18-1`
-#> [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_93485" "BC_70225"
-#> [7] "BC_79755" "BC_4564" "BC_124796" "BC_58978" "BC_8419" "BC_149935"
-#> [13] "BC_68847" "BC_90135" "BC_4173" "BC_4469" "BC_172626" "BC_31610"
-#> [19] "BC_383329" "BC_55960" "BC_62970" "BC_102160" "BC_244320" "BC_400391"
-#> [25] "BC_135438" "BC_203989" "BC_81579"
-#>
-#> $TopBarcodes$`S18-2`
-#> [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_70225" "BC_93485"
-#> [7] "BC_79755" "BC_4564" "BC_124796" "BC_8419" "BC_58978" "BC_149935"
-#> [13] "BC_68847" "BC_90135" "BC_4173" "BC_4469" "BC_172626" "BC_31610"
-#> [19] "BC_383329" "BC_55960" "BC_62970" "BC_102160" "BC_244320" "BC_400391"
-#> [25] "BC_135438" "BC_203989" "BC_133178"
-#>
-#> $TopBarcodes$`S1-1`
-#> [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234" "BC_400391"
-#> [7] "BC_142112" "BC_94511" "BC_68847" "BC_142024" "BC_23241" "BC_47310"
-#> [13] "BC_9141" "BC_65104"
-#>
-#> $TopBarcodes$`S1-2`
-#> [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234" "BC_142112"
-#> [7] "BC_400391" "BC_94511" "BC_68847" "BC_142024" "BC_23241" "BC_9141"
-#> [13] "BC_47310" "BC_5472" "BC_65104"
-#>
-#> $TopBarcodes$`S2-1`
-#> [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-#> [7] "BC_388103" "BC_257382" "BC_68618" "BC_102160" "BC_4531" "BC_90135"
-#>
-#> $TopBarcodes$`S2-2`
-#> [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-#> [7] "BC_388103" "BC_257382" "BC_68618" "BC_102160" "BC_4531"
-#>
-#> $TopBarcodes$`S3-1`
-#> [1] "BC_79755" "BC_142024" "BC_102160" "BC_183691" "BC_59493" "BC_345889"
-#> [7] "BC_23361" "BC_70225" "BC_30946" "BC_159570"
-#>
-#> $TopBarcodes$`S3-2`
-#> [1] "BC_79755" "BC_142024" "BC_102160" "BC_183691" "BC_59493" "BC_345889"
-#> [7] "BC_23361" "BC_70225" "BC_159570" "BC_30946"
-#>
-#> $TopBarcodes$`S4-1`
-#> [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-#> [7] "BC_327422" "BC_36103" "BC_102160" "BC_81579" "BC_118640" "BC_135438"
-#> [13] "BC_205581" "BC_91412" "BC_4564" "BC_1607" "BC_159570" "BC_468335"
-#> [19] "BC_560839" "BC_229324" "BC_49397" "BC_203989" "BC_124796" "BC_8419"
-#> [25] "BC_190202"
-#>
-#> $TopBarcodes$`S4-2`
-#> [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-#> [7] "BC_327422" "BC_36103" "BC_81579" "BC_102160" "BC_118640" "BC_135438"
-#> [13] "BC_1607" "BC_205581" "BC_4564" "BC_91412" "BC_229324" "BC_560839"
-#> [19] "BC_159570" "BC_468335" "BC_49397" "BC_203989" "BC_124796" "BC_8419"
-#> [25] "BC_190202" "BC_23241"
-#>
-#> $TopBarcodes$`S5-1`
-#> [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607" "BC_31610" "BC_23361"
-#> [7] "BC_159570" "BC_93485" "BC_468335" "BC_81579" "BC_257382"
-#>
-#> $TopBarcodes$`S5-2`
-#> [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607" "BC_31610" "BC_23361"
-#> [7] "BC_159570" "BC_93485" "BC_81579" "BC_468335" "BC_257382" "BC_21013"
-#>
-#> $TopBarcodes$`S6-1`
-#> [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564" "BC_400391" "BC_31610"
-#> [7] "BC_1478" "BC_90135" "BC_388103"
-#>
-#> $TopBarcodes$`S6-2`
-#> [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564" "BC_400391" "BC_31610"
-#> [7] "BC_1478" "BC_90135" "BC_54442" "BC_388103"
-#>
-#> $TopBarcodes$`S7-1`
-#> [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485" "BC_124796"
-#> [7] "BC_23544" "BC_8419" "BC_324711" "BC_159570" "BC_58978" "BC_90135"
-#> [13] "BC_345889" "BC_4564" "BC_102160" "BC_400391"
-#>
-#> $TopBarcodes$`S7-2`
-#> [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485" "BC_124796"
-#> [7] "BC_23544" "BC_8419" "BC_324711" "BC_159570" "BC_58978" "BC_90135"
-#> [13] "BC_4564" "BC_345889" "BC_102160" "BC_400391"
-#>
-#> $TopBarcodes$`S8-1`
-#> [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485" "BC_363879" "BC_4531"
-#> [7] "BC_205581" "BC_118640" "BC_79755" "BC_31610" "BC_1607" "BC_82758"
-#> [13] "BC_389078" "BC_194823" "BC_251167" "BC_77209" "BC_68847" "BC_102160"
-#> [19] "BC_4173" "BC_4564"
-#>
-#> $TopBarcodes$`S8-2`
-#> [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485" "BC_363879" "BC_4531"
-#> [7] "BC_205581" "BC_118640" "BC_79755" "BC_1607" "BC_31610" "BC_82758"
-#> [13] "BC_194823" "BC_251167" "BC_389078" "BC_68847" "BC_77209" "BC_102160"
-#> [19] "BC_4173" "BC_4564" "BC_94579"
-#>
-#> $TopBarcodes$`S9-1`
-#> [1] "BC_79755" "BC_4198" "BC_81579" "BC_560839" "BC_118640" "BC_345889"
-#> [7] "BC_400391" "BC_1607" "BC_319105" "BC_35704" "BC_205581" "BC_90135"
-#> [13] "BC_124796" "BC_8419" "BC_142024" "BC_561471" "BC_68847" "BC_19146"
-#> [19] "BC_78912"
-#>
-#> $TopBarcodes$`S9-2`
-#> [1] "BC_79755" "BC_4198" "BC_81579" "BC_118640" "BC_560839" "BC_345889"
-#> [7] "BC_400391" "BC_1607" "BC_319105" "BC_35704" "BC_205581" "BC_90135"
-#> [13] "BC_124796" "BC_142024" "BC_8419" "BC_561471" "BC_19146" "BC_68847"
-#> [19] "BC_78912"
-#>
-#>
-#> $TopBarcodeCounts
-#> $TopBarcodeCounts$`T0-1`
-#> T0-1
-#> BC_245016 235792
-#> BC_121651 229674
-#> BC_420967 140576
-#> BC_108059 107746
-#> BC_323670 93902
-#> BC_9141 75789
-#> BC_331193 61209
-#> BC_119418 51910
-#> BC_65104 45136
-#> BC_17570 44290
-#> BC_35704 41752
-#> BC_383329 40346
-#> BC_92942 39154
-#> BC_24510 38403
-#> BC_1396 38215
-#> BC_83680 36945
-#> BC_55858 31659
-#> BC_38589 31330
-#> BC_137495 30929
-#> BC_69627 29428
-#> BC_446739 27684
-#> BC_171385 24017
-#> BC_12367 23205
-#> BC_280320 23170
-#> BC_15782 22725
-#> BC_310257 21578
-#> BC_221975 21486
-#> BC_313129 21335
-#> BC_67201 18479
-#> BC_3618 17186
-#> BC_107789 17104
-#> BC_36103 16025
-#> BC_2596 15901
-#> BC_69641 14140
-#> BC_215831 13831
-#> BC_16618 13795
-#> BC_249402 13610
-#> BC_141060 13535
-#> BC_13611 13328
-#> BC_22306 13090
-#> BC_588849 13063
-#> BC_43535 12925
-#> BC_16956 12924
-#> BC_175651 12903
-#> BC_294188 12701
-#> BC_46538 12667
-#> BC_344050 12651
-#> BC_25084 12454
-#> BC_56819 12186
-#> BC_206193 11681
-#> BC_428803 11596
-#> BC_219379 11334
-#> BC_400391 11240
-#> BC_19146 10980
-#> BC_205581 10868
-#> BC_148563 10683
-#> BC_114027 10338
-#> BC_172626 10332
-#> BC_403084 10243
-#> BC_62602 10088
-#> BC_224300 9814
-#> BC_47439 9520
-#> BC_18278 9480
-#> BC_43128 9389
-#> BC_68847 9033
-#> BC_111272 9008
-#> BC_58978 8725
-#> BC_162898 8480
-#> BC_476380 8338
-#> BC_262618 8324
-#> BC_276866 8296
-#> BC_252374 8167
-#> BC_550404 8046
-#> BC_325065 7949
-#> BC_202891 7930
-#> BC_50136 7895
-#> BC_255436 7874
-#> BC_103528 7849
-#> BC_425129 7823
-#> BC_168818 7818
-#> BC_204266 7756
-#> BC_176946 7643
-#> BC_521149 7583
-#> BC_105387 7326
-#> BC_227720 7284
-#> BC_83707 7266
-#> BC_64584 7171
-#> BC_21018 7056
-#> BC_458543 7033
-#> BC_11643 7000
-#> BC_175871 6893
-#> BC_556149 6772
-#> BC_34617 6462
-#> BC_166467 6460
-#> BC_41692 6409
-#> BC_72619 6392
-#> BC_168530 6363
-#> BC_289383 6347
-#> BC_2040 6290
-#> BC_516753 6259
-#> BC_24159 6246
-#> BC_249161 6223
-#> BC_345717 6187
-#> BC_54442 6053
-#> BC_236596 6052
-#> BC_248159 6033
-#> BC_206263 5911
-#> BC_376665 5867
-#> BC_18345 5820
-#> BC_114040 5760
-#> BC_612467 5614
-#> BC_56338 5560
-#> BC_363714 5450
-#> BC_39281 5389
-#> BC_30946 5292
-#> BC_32325 5202
-#> BC_418545 5107
-#> BC_103714 5093
-#> BC_140320 5043
-#> BC_120596 4965
-#> BC_503475 4946
-#> BC_160057 4936
-#> BC_16754 4925
-#> BC_43673 4922
-#> BC_173736 4913
-#> BC_46524 4874
-#> BC_142999 4871
-#> BC_11277 4832
-#> BC_67854 4812
-#> BC_258799 4694
-#> BC_13395 4689
-#> BC_37062 4673
-#> BC_38398 4658
-#> BC_105732 4622
-#> BC_139928 4582
-#> BC_355420 4539
-#> BC_40856 4515
-#> BC_128266 4473
-#> BC_321677 4464
-#> BC_203520 4459
-#> BC_29284 4430
-#> BC_172412 4416
-#> BC_85441 4400
-#> BC_20263 4392
-#> BC_118831 4382
-#> BC_10454 4369
-#> BC_5256 4362
-#> BC_129519 4338
-#> BC_11391 4303
-#> BC_172238 4298
-#> BC_43123 4290
-#> BC_42178 4287
-#> BC_102205 4287
-#> BC_346124 4265
-#> BC_389078 4171
-#> BC_42612 4162
-#> BC_93485 4085
-#> BC_415373 4064
-#> BC_3733 4063
-#> BC_32680 4060
-#> BC_474982 4011
-#> BC_7405 3964
-#> BC_289568 3919
-#> BC_229995 3867
-#> BC_79026 3769
-#> BC_45955 3742
-#> BC_146666 3727
-#> BC_183401 3720
-#> BC_356531 3656
-#> BC_187025 3625
-#> BC_42310 3618
-#> BC_221056 3618
-#> BC_132225 3585
-#> BC_235128 3561
-#> BC_15740 3530
-#> BC_160158 3525
-#> BC_320233 3524
-#> BC_8835 3492
-#> BC_173674 3443
-#> BC_53234 3423
-#> BC_91412 3390
-#> BC_135438 3390
-#> BC_373901 3388
-#> BC_44599 3349
-#> BC_87047 3338
-#> BC_350464 3324
-#> BC_324711 3320
-#> BC_40516 3289
-#> BC_113839 3281
-#> BC_162119 3281
-#> BC_33699 3222
-#> BC_635211 3216
-#> BC_346627 3214
-#> BC_7122 3142
-#> BC_806 3135
-#> BC_63846 3135
-#> BC_283335 3111
-#> BC_151544 3104
-#> BC_273124 3101
-#> BC_227308 3075
-#> BC_47726 3060
-#> BC_102803 3056
-#> BC_244320 3036
-#> BC_10347 3032
-#> BC_389742 3009
-#> BC_2865 3004
-#> BC_77030 2974
-#> BC_65130 2970
-#> BC_564039 2950
-#> BC_519985 2943
-#> BC_76947 2937
-#> BC_4564 2934
-#> BC_521485 2933
-#> BC_495859 2921
-#> BC_35659 2918
-#> BC_14377 2908
-#> BC_199881 2905
-#> BC_147006 2887
-#> BC_26769 2885
-#> BC_100344 2869
-#> BC_672202 2856
-#> BC_146146 2848
-#> BC_320752 2845
-#> BC_324953 2834
-#> BC_217211 2830
-#> BC_67965 2821
-#> BC_210529 2810
-#> BC_189813 2805
-#> BC_242383 2801
-#> BC_560839 2798
-#> BC_228994 2788
-#> BC_389087 2775
-#> BC_44600 2762
-#> BC_20557 2757
-#> BC_10808 2724
-#> BC_138900 2720
-#> BC_81309 2702
-#> BC_145719 2690
-#> BC_58144 2674
-#> BC_7299 2667
-#> BC_78349 2666
-#> BC_102160 2658
-#> BC_164378 2656
-#> BC_211828 2653
-#> BC_336794 2649
-#> BC_53380 2641
-#> BC_14492 2636
-#> BC_23241 2613
-#> BC_57621 2609
-#> BC_11270 2605
-#> BC_41523 2589
-#> BC_33764 2583
-#> BC_12191 2564
-#> BC_17608 2564
-#> BC_8324 2549
-#> BC_183112 2531
-#> BC_167638 2509
-#> BC_2206 2504
-#> BC_123791 2482
-#> BC_377226 2467
-#> BC_195246 2447
-#> BC_161563 2433
-#> BC_67233 2430
-#> BC_421415 2428
-#> BC_150291 2424
-#> BC_408928 2410
-#> BC_410172 2406
-#> BC_121663 2393
-#> BC_201293 2368
-#> BC_156353 2338
-#> BC_45652 2320
-#> BC_357846 2320
-#> BC_199093 2308
-#> BC_214878 2300
-#> BC_6093 2287
-#> BC_214604 2266
-#> BC_302238 2250
-#> BC_521264 2244
-#> BC_672021 2223
-#> BC_2294 2218
-#> BC_587139 2212
-#> BC_638624 2206
-#> BC_86358 2199
-#> BC_1764 2174
-#> BC_366637 2171
-#> BC_218093 2168
-#> BC_201372 2155
-#> BC_19353 2139
-#> BC_130431 2134
-#> BC_22999 2112
-#> BC_49044 2112
-#> BC_154519 2111
-#> BC_324042 2110
-#> BC_37363 2103
-#> BC_154990 2098
-#> BC_350335 2098
-#> BC_194823 2051
-#> BC_23522 2047
-#> BC_141246 2046
-#> BC_4531 2036
-#> BC_4733 2025
-#> BC_654016 2009
-#> BC_147380 1995
-#> BC_196282 1994
-#> BC_52081 1980
-#> BC_207651 1977
-#> BC_380559 1974
-#> BC_527469 1961
-#> BC_353112 1959
-#> BC_426662 1958
-#> BC_655329 1949
-#> BC_73098 1947
-#> BC_146322 1937
-#> BC_596629 1928
-#> BC_64945 1915
-#> BC_462254 1913
-#> BC_261055 1909
-#> BC_145403 1898
-#> BC_61489 1893
-#> BC_617554 1891
-#> BC_228018 1882
-#> BC_249649 1878
-#> BC_211811 1848
-#> BC_101581 1846
-#> BC_43206 1833
-#> BC_326596 1829
-#> BC_514247 1824
-#> BC_88464 1815
-#> BC_203989 1815
-#> BC_206798 1814
-#> BC_19610 1803
-#> BC_9626 1795
-#> BC_116921 1791
-#> BC_181554 1780
-#> BC_79755 1779
-#> BC_77101 1757
-#> BC_55675 1755
-#> BC_83816 1751
-#> BC_138737 1748
-#> BC_322542 1733
-#> BC_318282 1731
-#> BC_444573 1730
-#> BC_9340 1729
-#> BC_49226 1728
-#> BC_57692 1721
-#> BC_93884 1720
-#> BC_181957 1718
-#> BC_217320 1712
-#> BC_296283 1710
-#> BC_3583 1704
-#> BC_11055 1700
-#> BC_95934 1691
-#> BC_88099 1685
-#> BC_35283 1678
-#> BC_67374 1673
-#> BC_175957 1662
-#> BC_266451 1658
-#> BC_283541 1657
-#> BC_14484 1656
-#> BC_14810 1625
-#> BC_157906 1624
-#> BC_354350 1612
-#> BC_539228 1608
-#> BC_61500 1606
-#> BC_45402 1602
-#> BC_234390 1602
-#> BC_415903 1600
-#> BC_12418 1597
-#> BC_238160 1597
-#> BC_29208 1595
-#> BC_91989 1594
-#> BC_92584 1586
-#> BC_351660 1583
-#> BC_381245 1578
-#> BC_31196 1577
-#> BC_47310 1576
-#> BC_20573 1573
-#> BC_64931 1573
-#> BC_2430 1558
-#> BC_15448 1556
-#> BC_94579 1552
-#> BC_171953 1548
-#> BC_9322 1541
-#> BC_587343 1522
-#> BC_50222 1505
-#> BC_53219 1505
-#> BC_77187 1501
-#> BC_7691 1497
-#> BC_225019 1495
-#> BC_238577 1494
-#> BC_6304 1486
-#> BC_13093 1478
-#> BC_154696 1469
-#> BC_275321 1468
-#> BC_75688 1465
-#> BC_10293 1462
-#> BC_13 1458
-#> BC_90135 1451
-#> BC_357977 1451
-#> BC_4198 1446
-#> BC_147556 1443
-#> BC_231962 1441
-#> BC_175198 1440
-#> BC_144061 1433
-#> BC_26258 1422
-#> BC_114257 1420
-#> BC_194092 1417
-#> BC_31779 1413
-#> BC_268745 1404
-#> BC_67247 1399
-#> BC_82595 1399
-#> BC_103862 1393
-#> BC_149347 1390
-#> BC_346761 1388
-#> BC_473006 1388
-#> BC_49397 1378
-#> BC_302454 1378
-#> BC_207333 1376
-#> BC_31185 1367
-#> BC_115436 1367
-#> BC_124624 1367
-#> BC_491991 1365
-#> BC_309303 1362
-#> BC_12410 1359
-#> BC_228333 1353
-#> BC_528062 1351
-#> BC_363879 1350
-#> BC_70909 1346
-#> BC_563624 1341
-#> BC_11152 1337
-#> BC_446649 1325
-#> BC_129768 1310
-#> BC_129559 1283
-#> BC_169627 1281
-#> BC_21535 1239
-#> BC_516611 1235
-#> BC_57582 1234
-#> BC_159570 1234
-#> BC_130861 1232
-#> BC_48168 1215
-#> BC_66948 1214
-#> BC_257382 1213
-#> BC_179919 1210
-#> BC_15707 1204
-#> BC_17509 1195
-#> BC_444761 1187
-#> BC_57794 1183
-#> BC_147063 1183
-#> BC_52856 1173
-#> BC_14452 1170
-#> BC_316483 1167
-#> BC_186401 1162
-#> BC_90599 1160
-#> BC_245600 1160
-#> BC_1977 1158
-#> BC_99 1155
-#> BC_176231 1151
-#> BC_472019 1150
-#> BC_292962 1147
-#> BC_221691 1145
-#> BC_170233 1138
-#> BC_182320 1129
-#> BC_381050 1120
-#> BC_28938 1116
-#> BC_67370 1112
-#> BC_110945 1111
-#> BC_195887 1104
-#> BC_257523 1098
-#> BC_2762 1091
-#> BC_255928 1082
-#> BC_355439 1074
-#> BC_33035 1068
-#> BC_125634 1066
-#> BC_430 1060
-#> BC_146760 1060
-#> BC_164579 1060
-#> BC_345889 1059
-#> BC_142112 1057
-#> BC_515934 1056
-#> BC_141114 1051
-#> BC_20281 1045
-#> BC_322219 1037
-#> BC_248582 1035
-#> BC_1593 1032
-#> BC_9747 1030
-#> BC_82758 1022
-#> BC_329007 1021
-#> BC_567519 1015
-#> BC_229036 1012
-#> BC_50311 1010
-#> BC_576338 1008
-#> BC_189854 1005
-#> BC_25609 1003
-#> BC_56489 1000
-#> BC_10190 996
-#> BC_41280 994
-#> BC_370968 994
-#> BC_162322 984
-#> BC_337697 973
-#> BC_6453 968
-#> BC_186267 966
-#> BC_222891 961
-#> BC_297704 960
-#> BC_145103 958
-#> BC_81579 954
-#> BC_35633 951
-#> BC_170407 950
-#> BC_62970 946
-#> BC_120505 940
-#> BC_66747 935
-#> BC_413466 935
-#> BC_329679 930
-#> BC_454109 928
-#> BC_37116 926
-#> BC_389378 925
-#> BC_4061 922
-#> BC_163063 919
-#> BC_125776 911
-#> BC_38465 904
-#> BC_278096 904
-#> BC_288976 901
-#> BC_171345 900
-#> BC_557872 898
-#> BC_127999 897
-#> BC_259621 889
-#> BC_314343 889
-#> BC_80020 888
-#> BC_228451 888
-#> BC_282868 884
-#> BC_182092 882
-#> BC_56792 877
-#> BC_143062 877
-#> BC_219703 876
-#> BC_235649 876
-#> BC_131019 875
-#> BC_561471 870
-#> BC_22981 863
-#> BC_567514 861
-#> BC_345175 856
-#> BC_345888 853
-#> BC_7076 848
-#> BC_220827 845
-#> BC_23213 840
-#> BC_73196 839
-#> BC_2142 838
-#> BC_41997 838
-#> BC_147873 836
-#> BC_19557 835
-#> BC_29053 834
-#> BC_230643 832
-#> BC_28077 827
-#> BC_22263 825
-#> BC_29984 824
-#> BC_215667 819
-#> BC_69571 818
-#> BC_8838 813
-#> BC_275938 813
-#> BC_413636 808
-#> BC_2791 807
-#> BC_26462 807
-#> BC_29222 804
-#> BC_4173 794
-#> BC_89937 794
-#> BC_8159 793
-#> BC_413271 792
-#> BC_14131 791
-#> BC_59243 788
-#> BC_190202 786
-#> BC_294271 785
-#> BC_23918 784
-#> BC_154806 783
-#> BC_214774 775
-#> BC_26384 771
-#> BC_57471 763
-#> BC_1534 756
-#> BC_451991 755
-#> BC_15172 753
-#> BC_109658 747
-#> BC_483925 744
-#> BC_71820 743
-#> BC_330625 740
-#> BC_153858 737
-#> BC_319910 737
-#> BC_459545 737
-#> BC_53645 725
-#> BC_84350 724
-#> BC_427925 724
-#> BC_75310 721
-#> BC_5615 719
-#> BC_142652 719
-#> BC_50626 718
-#> BC_107381 718
-#> BC_8715 717
-#>
-#> $TopBarcodeCounts$`T0-2`
-#> T0-2
-#> BC_245016 223791
-#> BC_121651 204396
-#> BC_420967 131262
-#> BC_108059 100438
-#> BC_323670 83518
-#> BC_9141 68107
-#> BC_331193 56283
-#> BC_119418 48796
-#> BC_65104 44721
-#> BC_17570 44349
-#> BC_35704 42341
-#> BC_92942 40957
-#> BC_383329 36775
-#> BC_83680 35981
-#> BC_1396 34908
-#> BC_24510 32774
-#> BC_55858 32560
-#> BC_38589 29758
-#> BC_313129 26285
-#> BC_446739 26017
-#> BC_137495 24915
-#> BC_69627 24208
-#> BC_171385 22254
-#> BC_280320 22064
-#> BC_221975 21961
-#> BC_12367 21757
-#> BC_15782 20633
-#> BC_3618 18453
-#> BC_310257 17985
-#> BC_107789 17399
-#> BC_67201 16457
-#> BC_36103 14866
-#> BC_215831 14499
-#> BC_43535 14158
-#> BC_2596 14144
-#> BC_13611 13531
-#> BC_294188 13083
-#> BC_588849 13038
-#> BC_16618 13026
-#> BC_69641 12895
-#> BC_22306 12188
-#> BC_428803 11962
-#> BC_403084 11682
-#> BC_141060 11207
-#> BC_205581 11081
-#> BC_249402 11072
-#> BC_206193 10792
-#> BC_25084 10713
-#> BC_344050 10657
-#> BC_400391 10460
-#> BC_325065 10413
-#> BC_219379 10141
-#> BC_46538 10026
-#> BC_289383 10001
-#> BC_56819 9695
-#> BC_43128 9686
-#> BC_175651 9683
-#> BC_18278 9643
-#> BC_172626 9564
-#> BC_19146 9489
-#> BC_47439 9482
-#> BC_252374 9310
-#> BC_58978 9275
-#> BC_21018 8749
-#> BC_521149 8625
-#> BC_16956 8603
-#> BC_262618 8587
-#> BC_50136 8414
-#> BC_202891 8319
-#> BC_148563 8270
-#> BC_62602 8246
-#> BC_458543 8209
-#> BC_68847 8165
-#> BC_114027 8136
-#> BC_476380 8103
-#> BC_276866 7928
-#> BC_111272 7720
-#> BC_176946 7511
-#> BC_255436 7420
-#> BC_168818 7404
-#> BC_550404 7402
-#> BC_175871 7397
-#> BC_204266 6989
-#> BC_64584 6943
-#> BC_425129 6929
-#> BC_83707 6887
-#> BC_162898 6821
-#> BC_224300 6737
-#> BC_103528 6556
-#> BC_34617 6437
-#> BC_72619 6416
-#> BC_516753 6395
-#> BC_105387 6368
-#> BC_376665 6255
-#> BC_18345 6155
-#> BC_2040 6063
-#> BC_168530 6045
-#> BC_11643 6039
-#> BC_114040 5775
-#> BC_227720 5568
-#> BC_556149 5485
-#> BC_7405 5475
-#> BC_249161 5470
-#> BC_345717 5369
-#> BC_363714 5357
-#> BC_248159 5310
-#> BC_24159 5243
-#> BC_236596 5138
-#> BC_16754 5126
-#> BC_206263 5087
-#> BC_118831 4976
-#> BC_54442 4975
-#> BC_41692 4943
-#> BC_503475 4931
-#> BC_5256 4925
-#> BC_11277 4919
-#> BC_67854 4806
-#> BC_30946 4718
-#> BC_43673 4688
-#> BC_29284 4677
-#> BC_85441 4668
-#> BC_160057 4652
-#> BC_166467 4593
-#> BC_56338 4587
-#> BC_20263 4536
-#> BC_258799 4489
-#> BC_172412 4372
-#> BC_32325 4362
-#> BC_321677 4354
-#> BC_79026 4342
-#> BC_37062 4337
-#> BC_120596 4332
-#> BC_203520 4274
-#> BC_418545 4216
-#> BC_135438 4181
-#> BC_139928 4158
-#> BC_160158 4131
-#> BC_635211 4121
-#> BC_612467 4112
-#> BC_11391 4062
-#> BC_564039 4055
-#> BC_47726 4015
-#> BC_105732 4008
-#> BC_46524 3976
-#> BC_53234 3974
-#> BC_103714 3971
-#> BC_140320 3967
-#> BC_289568 3947
-#> BC_415373 3915
-#> BC_102803 3880
-#> BC_39281 3868
-#> BC_3733 3867
-#> BC_172238 3845
-#> BC_93485 3842
-#> BC_13395 3799
-#> BC_43123 3765
-#> BC_2294 3755
-#> BC_146666 3743
-#> BC_132225 3716
-#> BC_40516 3710
-#> BC_173736 3708
-#> BC_42612 3706
-#> BC_356531 3698
-#> BC_113839 3658
-#> BC_519985 3646
-#> BC_129519 3613
-#> BC_77030 3597
-#> BC_32680 3585
-#> BC_183401 3585
-#> BC_128266 3548
-#> BC_210529 3515
-#> BC_161563 3448
-#> BC_355420 3440
-#> BC_217211 3431
-#> BC_324711 3417
-#> BC_10454 3411
-#> BC_91412 3399
-#> BC_44599 3397
-#> BC_40856 3368
-#> BC_8835 3358
-#> BC_142999 3334
-#> BC_173674 3330
-#> BC_151544 3325
-#> BC_229995 3292
-#> BC_346124 3257
-#> BC_42310 3253
-#> BC_102160 3250
-#> BC_45955 3249
-#> BC_15740 3246
-#> BC_17608 3193
-#> BC_350464 3183
-#> BC_560839 3183
-#> BC_389078 3178
-#> BC_76947 3169
-#> BC_33699 3141
-#> BC_145719 3132
-#> BC_42178 3119
-#> BC_67233 3104
-#> BC_38398 3094
-#> BC_7122 3083
-#> BC_410172 3047
-#> BC_65130 3008
-#> BC_189813 2976
-#> BC_8324 2930
-#> BC_324953 2909
-#> BC_521485 2908
-#> BC_235128 2892
-#> BC_63846 2883
-#> BC_320752 2881
-#> BC_87047 2866
-#> BC_67965 2860
-#> BC_102205 2842
-#> BC_242383 2833
-#> BC_377226 2832
-#> BC_389742 2832
-#> BC_211828 2822
-#> BC_273124 2790
-#> BC_23522 2783
-#> BC_154990 2746
-#> BC_320233 2714
-#> BC_41523 2674
-#> BC_183112 2669
-#> BC_221056 2643
-#> BC_2865 2641
-#> BC_672202 2641
-#> BC_187025 2632
-#> BC_326596 2621
-#> BC_283335 2602
-#> BC_336794 2593
-#> BC_44600 2570
-#> BC_227308 2555
-#> BC_156353 2536
-#> BC_207651 2528
-#> BC_408928 2503
-#> BC_495859 2502
-#> BC_162119 2501
-#> BC_64931 2488
-#> BC_7299 2476
-#> BC_53380 2476
-#> BC_35659 2473
-#> BC_101581 2466
-#> BC_4733 2447
-#> BC_199881 2446
-#> BC_57621 2434
-#> BC_373901 2422
-#> BC_164378 2409
-#> BC_147006 2391
-#> BC_214604 2385
-#> BC_45652 2368
-#> BC_154519 2364
-#> BC_64945 2363
-#> BC_346627 2344
-#> BC_201293 2343
-#> BC_366637 2336
-#> BC_26769 2329
-#> BC_474982 2326
-#> BC_206798 2324
-#> BC_9340 2319
-#> BC_19353 2314
-#> BC_95934 2291
-#> BC_20557 2289
-#> BC_14377 2272
-#> BC_6093 2256
-#> BC_33764 2252
-#> BC_389087 2245
-#> BC_130861 2223
-#> BC_157906 2189
-#> BC_462254 2183
-#> BC_244320 2179
-#> BC_1764 2173
-#> BC_123791 2169
-#> BC_37363 2159
-#> BC_86358 2140
-#> BC_194823 2129
-#> BC_211811 2114
-#> BC_53219 2111
-#> BC_421415 2111
-#> BC_100344 2097
-#> BC_2206 2096
-#> BC_78349 2096
-#> BC_221691 2096
-#> BC_116921 2090
-#> BC_228994 2056
-#> BC_10347 2055
-#> BC_514247 2053
-#> BC_175198 2052
-#> BC_266451 2041
-#> BC_638624 2035
-#> BC_4531 2033
-#> BC_10808 2028
-#> BC_88464 2010
-#> BC_228018 2003
-#> BC_196282 2000
-#> BC_81309 1999
-#> BC_167638 1997
-#> BC_130431 1976
-#> BC_346761 1975
-#> BC_77101 1969
-#> BC_672021 1962
-#> BC_446649 1959
-#> BC_12418 1958
-#> BC_22999 1952
-#> BC_350335 1946
-#> BC_14492 1930
-#> BC_806 1925
-#> BC_141114 1924
-#> BC_138737 1921
-#> BC_10293 1918
-#> BC_175957 1910
-#> BC_14810 1895
-#> BC_444573 1892
-#> BC_521264 1892
-#> BC_147380 1890
-#> BC_380559 1888
-#> BC_539228 1879
-#> BC_162322 1873
-#> BC_91989 1868
-#> BC_145403 1865
-#> BC_57692 1863
-#> BC_61489 1859
-#> BC_58144 1855
-#> BC_4564 1842
-#> BC_77187 1838
-#> BC_121663 1816
-#> BC_73098 1810
-#> BC_141246 1792
-#> BC_195246 1778
-#> BC_49226 1777
-#> BC_171953 1763
-#> BC_181957 1761
-#> BC_214878 1757
-#> BC_182320 1748
-#> BC_114257 1734
-#> BC_146146 1716
-#> BC_6304 1699
-#> BC_181554 1696
-#> BC_13093 1694
-#> BC_528062 1694
-#> BC_587139 1693
-#> BC_55675 1691
-#> BC_23241 1690
-#> BC_11270 1682
-#> BC_20573 1682
-#> BC_29208 1670
-#> BC_218093 1661
-#> BC_654016 1623
-#> BC_150291 1607
-#> BC_292962 1600
-#> BC_217320 1596
-#> BC_199093 1595
-#> BC_138900 1579
-#> BC_225019 1578
-#> BC_12191 1567
-#> BC_354350 1567
-#> BC_115436 1556
-#> BC_99 1554
-#> BC_93884 1538
-#> BC_234390 1525
-#> BC_527469 1520
-#> BC_351660 1515
-#> BC_201372 1512
-#> BC_3583 1511
-#> BC_19610 1508
-#> BC_587343 1507
-#> BC_353112 1499
-#> BC_15448 1489
-#> BC_357977 1482
-#> BC_2430 1479
-#> BC_617554 1473
-#> BC_11152 1472
-#> BC_31779 1461
-#> BC_330625 1451
-#> BC_147556 1443
-#> BC_88099 1436
-#> BC_2791 1426
-#> BC_67247 1424
-#> BC_110945 1421
-#> BC_50222 1412
-#> BC_147063 1403
-#> BC_9626 1400
-#> BC_1593 1394
-#> BC_426662 1392
-#> BC_413271 1390
-#> BC_49044 1376
-#> BC_4198 1373
-#> BC_164652 1373
-#> BC_125634 1369
-#> BC_322542 1367
-#> BC_203989 1353
-#> BC_67374 1351
-#> BC_45402 1343
-#> BC_14484 1337
-#> BC_195887 1334
-#> BC_9322 1332
-#> BC_415903 1331
-#> BC_82595 1324
-#> BC_329007 1324
-#> BC_146322 1318
-#> BC_261055 1311
-#> BC_90135 1307
-#> BC_26258 1298
-#> BC_363879 1296
-#> BC_515934 1290
-#> BC_11055 1269
-#> BC_49397 1269
-#> BC_381245 1266
-#> BC_309303 1253
-#> BC_12410 1249
-#> BC_249649 1249
-#> BC_318282 1244
-#> BC_57794 1243
-#> BC_67370 1239
-#> BC_316483 1238
-#> BC_31196 1237
-#> BC_357846 1230
-#> BC_9747 1223
-#> BC_83816 1223
-#> BC_26384 1221
-#> BC_52856 1219
-#> BC_302454 1203
-#> BC_50311 1196
-#> BC_282868 1192
-#> BC_61500 1190
-#> BC_238577 1185
-#> BC_47310 1181
-#> BC_31185 1180
-#> BC_283541 1179
-#> BC_79755 1165
-#> BC_231962 1162
-#> BC_56489 1154
-#> BC_120505 1153
-#> BC_94579 1150
-#> BC_444761 1146
-#> BC_70909 1143
-#> BC_296283 1140
-#> BC_15652 1129
-#> BC_276301 1124
-#> BC_322219 1124
-#> BC_169627 1121
-#> BC_84350 1120
-#> BC_596629 1118
-#> BC_21535 1110
-#> BC_52081 1108
-#> BC_7691 1104
-#> BC_302238 1103
-#> BC_165975 1102
-#> BC_14380 1101
-#> BC_144061 1099
-#> BC_129559 1093
-#> BC_491991 1091
-#> BC_43206 1083
-#> BC_35459 1081
-#> BC_228333 1070
-#> BC_176231 1069
-#> BC_75688 1063
-#> BC_516611 1057
-#> BC_149347 1055
-#> BC_220827 1051
-#> BC_207333 1049
-#> BC_159570 1046
-#> BC_288976 1044
-#> BC_81579 1027
-#> BC_44350 1025
-#> BC_145103 1024
-#> BC_35283 1012
-#> BC_250471 1004
-#> BC_97874 1000
-#> BC_567519 989
-#> BC_454109 988
-#> BC_355439 986
-#> BC_430 984
-#> BC_57582 984
-#> BC_48168 983
-#> BC_10190 979
-#> BC_19612 978
-#> BC_92584 976
-#> BC_212837 976
-#> BC_129768 970
-#> BC_345889 956
-#> BC_115038 955
-#> BC_228451 955
-#> BC_451991 955
-#> BC_179919 948
-#> BC_576338 944
-#> BC_655329 940
-#> BC_472019 939
-#> BC_168163 936
-#> BC_35633 935
-#> BC_257382 935
-#> BC_535770 934
-#> BC_329679 932
-#> BC_248582 931
-#> BC_62970 925
-#> BC_324042 919
-#> BC_18218 912
-#> BC_182092 908
-#> BC_142112 907
-#> BC_4173 892
-#> BC_100070 892
-#> BC_259621 883
-#> BC_567514 880
-#> BC_103862 878
-#> BC_28938 874
-#> BC_325871 872
-#> BC_49060 871
-#> BC_275321 871
-#> BC_186267 868
-#> BC_652798 865
-#> BC_1977 863
-#> BC_238160 862
-#> BC_189854 858
-#> BC_37116 855
-#> BC_255928 854
-#> BC_268745 852
-#> BC_23918 848
-#> BC_131019 847
-#> BC_171345 844
-#> BC_278096 840
-#> BC_13 834
-#> BC_82758 833
-#> BC_26097 831
-#> BC_65912 831
-#> BC_41280 826
-#> BC_245600 824
-#> BC_509872 823
-#> BC_15707 821
-#> BC_17509 821
-#> BC_154696 821
-#> BC_194092 820
-#> BC_28077 816
-#> BC_4165 815
-#> BC_154806 813
-#> BC_25609 810
-#> BC_33035 807
-#> BC_1139 802
-#> BC_80020 802
-#> BC_388103 801
-#> BC_59243 795
-#> BC_20281 788
-#> BC_57889 788
-#> BC_143062 788
-#> BC_218837 784
-#> BC_179997 778
-#> BC_90599 776
-#> BC_5615 775
-#> BC_23363 774
-#> BC_352645 772
-#> BC_292621 762
-#> BC_153858 760
-#> BC_230643 759
-#> BC_297704 754
-#> BC_381050 751
-#> BC_203210 746
-#> BC_8838 738
-#> BC_183115 738
-#> BC_257523 737
-#> BC_22263 734
-#> BC_56792 733
-#> BC_163063 729
-#> BC_184732 723
-#> BC_563624 718
-#> BC_77131 713
-#> BC_78760 706
-#> BC_370968 706
-#> BC_307924 704
-#> BC_331889 704
-#> BC_389378 704
-#> BC_29053 702
-#> BC_23213 700
-#> BC_428204 700
-#> BC_500299 697
-#> BC_14452 696
-#> BC_124624 696
-#> BC_22981 694
-#> BC_98171 693
-#> BC_170233 692
-#> BC_38465 691
-#> BC_47704 691
-#> BC_198370 686
-#> BC_14131 683
-#> BC_190202 683
-#> BC_278655 683
-#> BC_6453 682
-#> BC_557872 681
-#> BC_31562 677
-#> BC_128748 676
-#> BC_29984 675
-#> BC_294176 673
-#> BC_127999 668
-#> BC_796 664
-#>
-#> $TopBarcodeCounts$`S10-1`
-#> S10-1
-#> BC_8419 1991893
-#> BC_124796 1649985
-#> BC_102160 203430
-#>
-#> $TopBarcodeCounts$`S10-2`
-#> S10-2
-#> BC_8419 1995956
-#> BC_124796 1710825
-#> BC_102160 208878
-#> BC_68847 68155
-#>
-#> $TopBarcodeCounts$`S11-1`
-#> S11-1
-#> BC_53234 680240
-#> BC_205581 493308
-#> BC_90135 332038
-#> BC_172626 257083
-#> BC_58978 196664
-#> BC_79755 116795
-#> BC_159570 108699
-#> BC_118640 73041
-#> BC_31610 71654
-#> BC_257382 64909
-#> BC_1607 61994
-#> BC_635211 58710
-#> BC_4531 58679
-#> BC_324711 55178
-#> BC_327422 30934
-#> BC_297704 27654
-#> BC_194823 25858
-#> BC_415460 21413
-#> BC_140320 19073
-#>
-#> $TopBarcodeCounts$`S11-2`
-#> S11-2
-#> BC_53234 672838
-#> BC_205581 480681
-#> BC_90135 319597
-#> BC_172626 226125
-#> BC_58978 168069
-#> BC_79755 107090
-#> BC_159570 101497
-#> BC_635211 67342
-#> BC_118640 57323
-#> BC_324711 56730
-#> BC_31610 55511
-#> BC_257382 55165
-#> BC_4531 50457
-#> BC_1607 49865
-#> BC_327422 34475
-#> BC_297704 22422
-#> BC_194823 22402
-#> BC_415460 20209
-#> BC_62602 17792
-#> BC_140320 16805
-#>
-#> $TopBarcodeCounts$`S12-1`
-#> S12-1
-#> BC_389078 1413816
-#> BC_159570 615742
-#> BC_135438 272292
-#> BC_500780 246148
-#> BC_79755 235092
-#> BC_31610 185291
-#> BC_49629 144164
-#> BC_78349 134743
-#> BC_118640 132924
-#> BC_47726 128882
-#> BC_58978 115558
-#> BC_1607 108011
-#> BC_245016 107080
-#> BC_329679 79183
-#>
-#> $TopBarcodeCounts$`S12-2`
-#> S12-2
-#> BC_389078 1397641
-#> BC_159570 557943
-#> BC_135438 248280
-#> BC_500780 235202
-#> BC_79755 219591
-#> BC_31610 171947
-#> BC_49629 131663
-#> BC_118640 120960
-#> BC_47726 117847
-#> BC_78349 109942
-#> BC_245016 99030
-#> BC_58978 97876
-#> BC_1607 95198
-#> BC_329679 74065
-#>
-#> $TopBarcodeCounts$`S13-1`
-#> S13-1
-#> BC_8419 1132876
-#> BC_124796 1113617
-#> BC_102160 813971
-#> BC_257382 768188
-#> BC_172626 112559
-#> BC_345889 84734
-#> BC_53234 72801
-#> BC_79755 55138
-#> BC_5472 54808
-#> BC_205581 41262
-#>
-#> $TopBarcodeCounts$`S13-2`
-#> S13-2
-#> BC_8419 1075999
-#> BC_124796 1036131
-#> BC_102160 766818
-#> BC_257382 724300
-#> BC_172626 106215
-#> BC_345889 77361
-#> BC_53234 65594
-#> BC_5472 52942
-#> BC_79755 51810
-#> BC_17608 39408
-#> BC_205581 38917
-#>
-#> $TopBarcodeCounts$`S14-1`
-#> S14-1
-#> BC_90135 2015353
-#> BC_388103 1491990
-#> BC_31610 325001
-#> BC_58978 186583
-#> BC_292962 127737
-#> BC_159570 82869
-#>
-#> $TopBarcodeCounts$`S14-2`
-#> S14-2
-#> BC_90135 1814510
-#> BC_388103 1338206
-#> BC_31610 285251
-#> BC_58978 161284
-#> BC_292962 125041
-#> BC_159570 76636
-#>
-#> $TopBarcodeCounts$`S15-1`
-#> S15-1
-#> BC_1478 1137019
-#> BC_94579 930125
-#> BC_124796 490802
-#> BC_8419 480465
-#> BC_316204 95059
-#> BC_400391 61062
-#> BC_23241 42520
-#>
-#> $TopBarcodeCounts$`S15-2`
-#> S15-2
-#> BC_1478 1189434
-#> BC_94579 976104
-#> BC_124796 494292
-#> BC_8419 486189
-#> BC_316204 96050
-#> BC_400391 67224
-#> BC_23241 43739
-#>
-#> $TopBarcodeCounts$`S16-1`
-#> S16-1
-#> BC_53234 967214
-#> BC_79755 699557
-#> BC_140320 622182
-#> BC_31610 355389
-#> BC_248880 310481
-#> BC_1478 286098
-#> BC_17608 219959
-#> BC_257382 191551
-#> BC_345889 186661
-#> BC_94511 140502
-#> BC_142112 136360
-#> BC_142024 111299
-#> BC_91412 96497
-#> BC_58978 76133
-#> BC_190202 65758
-#> BC_4198 51449
-#> BC_68847 48868
-#> BC_389078 39963
-#> BC_47726 37946
-#>
-#> $TopBarcodeCounts$`S16-2`
-#> S16-2
-#> BC_53234 955906
-#> BC_79755 679328
-#> BC_140320 605778
-#> BC_31610 351863
-#> BC_248880 297737
-#> BC_1478 286187
-#> BC_17608 215120
-#> BC_257382 192418
-#> BC_345889 192200
-#> BC_94511 143289
-#> BC_142112 142201
-#> BC_142024 111762
-#> BC_91412 97112
-#> BC_58978 77379
-#> BC_190202 66762
-#> BC_68847 51297
-#> BC_4198 51154
-#> BC_389078 41183
-#> BC_47726 37684
-#> BC_205581 34755
-#>
-#> $TopBarcodeCounts$`S17-1`
-#> S17-1
-#> BC_183691 2648948
-#> BC_90135 1584269
-#> BC_400391 588642
-#> BC_31610 216675
-#> BC_68847 146098
-#>
-#> $TopBarcodeCounts$`S17-2`
-#> S17-2
-#> BC_183691 2785778
-#> BC_90135 1600044
-#> BC_400391 604178
-#> BC_31610 206900
-#> BC_68847 158068
-#> BC_53234 139785
-#>
-#> $TopBarcodeCounts$`S18-1`
-#> S18-1
-#> BC_49397 763504
-#> BC_91412 419115
-#> BC_159570 417080
-#> BC_62602 261522
-#> BC_93485 252666
-#> BC_70225 234477
-#> BC_79755 204363
-#> BC_4564 141545
-#> BC_124796 133198
-#> BC_58978 124347
-#> BC_8419 120698
-#> BC_149935 111889
-#> BC_68847 110884
-#> BC_90135 103890
-#> BC_4173 99281
-#> BC_4469 94003
-#> BC_172626 92447
-#> BC_31610 86277
-#> BC_383329 74354
-#> BC_55960 71818
-#> BC_62970 55812
-#> BC_102160 51865
-#> BC_244320 38874
-#> BC_400391 33062
-#> BC_135438 31484
-#> BC_203989 21276
-#> BC_81579 19900
-#>
-#> $TopBarcodeCounts$`S18-2`
-#> S18-2
-#> BC_49397 817999
-#> BC_91412 443237
-#> BC_159570 436654
-#> BC_62602 290698
-#> BC_70225 275474
-#> BC_93485 270096
-#> BC_79755 214481
-#> BC_4564 165210
-#> BC_124796 143216
-#> BC_8419 137545
-#> BC_58978 134487
-#> BC_149935 120452
-#> BC_68847 119995
-#> BC_90135 116149
-#> BC_4173 109548
-#> BC_4469 107465
-#> BC_172626 97888
-#> BC_31610 96129
-#> BC_383329 83812
-#> BC_55960 82691
-#> BC_62970 66186
-#> BC_102160 58036
-#> BC_244320 44322
-#> BC_400391 41088
-#> BC_135438 33668
-#> BC_203989 25743
-#> BC_133178 20613
-#>
-#> $TopBarcodeCounts$`S1-1`
-#> S1-1
-#> BC_79755 993343
-#> BC_102160 714207
-#> BC_59493 406903
-#> BC_23361 207760
-#> BC_53234 201367
-#> BC_400391 189577
-#> BC_142112 174047
-#> BC_94511 113449
-#> BC_68847 58203
-#> BC_142024 56214
-#> BC_23241 44498
-#> BC_47310 31114
-#> BC_9141 30245
-#> BC_65104 28467
-#>
-#> $TopBarcodeCounts$`S1-2`
-#> S1-2
-#> BC_79755 1222013
-#> BC_102160 808336
-#> BC_59493 463756
-#> BC_23361 256247
-#> BC_53234 244541
-#> BC_142112 200263
-#> BC_400391 195378
-#> BC_94511 143734
-#> BC_68847 67285
-#> BC_142024 66571
-#> BC_23241 54725
-#> BC_9141 39529
-#> BC_47310 38718
-#> BC_5472 35839
-#> BC_65104 33854
-#>
-#> $TopBarcodeCounts$`S2-1`
-#> S2-1
-#> BC_248880 2011324
-#> BC_65104 1426536
-#> BC_9141 1346962
-#> BC_1478 850892
-#> BC_31610 820495
-#> BC_79755 462821
-#> BC_388103 216599
-#> BC_257382 200090
-#> BC_68618 105753
-#> BC_102160 76111
-#> BC_4531 54809
-#> BC_90135 45785
-#>
-#> $TopBarcodeCounts$`S2-2`
-#> S2-2
-#> BC_248880 1182134
-#> BC_65104 933706
-#> BC_9141 932603
-#> BC_1478 561478
-#> BC_31610 468327
-#> BC_79755 308473
-#> BC_388103 133643
-#> BC_257382 121541
-#> BC_68618 69576
-#> BC_102160 49153
-#> BC_4531 31316
-#>
-#> $TopBarcodeCounts$`S3-1`
-#> S3-1
-#> BC_79755 2163553
-#> BC_142024 565889
-#> BC_102160 448714
-#> BC_183691 203408
-#> BC_59493 163823
-#> BC_345889 89546
-#> BC_23361 81236
-#> BC_70225 56521
-#> BC_30946 50953
-#> BC_159570 45613
-#>
-#> $TopBarcodeCounts$`S3-2`
-#> S3-2
-#> BC_79755 2486675
-#> BC_142024 696785
-#> BC_102160 551728
-#> BC_183691 257218
-#> BC_59493 196076
-#> BC_345889 107156
-#> BC_23361 93503
-#> BC_70225 66396
-#> BC_159570 61382
-#> BC_30946 59659
-#>
-#> $TopBarcodeCounts$`S4-1`
-#> S4-1
-#> BC_53234 692353
-#> BC_58978 342379
-#> BC_62602 280987
-#> BC_68847 237132
-#> BC_140320 223426
-#> BC_79755 208335
-#> BC_327422 190392
-#> BC_36103 181458
-#> BC_102160 151606
-#> BC_81579 139375
-#> BC_118640 132880
-#> BC_135438 119051
-#> BC_205581 102204
-#> BC_91412 92210
-#> BC_4564 91814
-#> BC_1607 90610
-#> BC_159570 66307
-#> BC_468335 66180
-#> BC_560839 64927
-#> BC_229324 62954
-#> BC_49397 49062
-#> BC_203989 43358
-#> BC_124796 38389
-#> BC_8419 31905
-#> BC_190202 26816
-#>
-#> $TopBarcodeCounts$`S4-2`
-#> S4-2
-#> BC_53234 507873
-#> BC_58978 223666
-#> BC_62602 181352
-#> BC_68847 145969
-#> BC_140320 144767
-#> BC_79755 139330
-#> BC_327422 138287
-#> BC_36103 118928
-#> BC_81579 96742
-#> BC_102160 93245
-#> BC_118640 89017
-#> BC_135438 70979
-#> BC_1607 66226
-#> BC_205581 62591
-#> BC_4564 61778
-#> BC_91412 58781
-#> BC_229324 40462
-#> BC_560839 38271
-#> BC_159570 36888
-#> BC_468335 35416
-#> BC_49397 34391
-#> BC_203989 33235
-#> BC_124796 24380
-#> BC_8419 21807
-#> BC_190202 17786
-#> BC_23241 16442
-#>
-#> $TopBarcodeCounts$`S5-1`
-#> S5-1
-#> BC_561471 2123044
-#> BC_118640 322753
-#> BC_59493 268377
-#> BC_1607 259730
-#> BC_31610 180017
-#> BC_23361 133885
-#> BC_159570 48021
-#> BC_93485 30112
-#> BC_468335 25518
-#> BC_81579 24169
-#> BC_257382 24078
-#>
-#> $TopBarcodeCounts$`S5-2`
-#> S5-2
-#> BC_561471 1975938
-#> BC_118640 290505
-#> BC_59493 246168
-#> BC_1607 224559
-#> BC_31610 172466
-#> BC_23361 122852
-#> BC_159570 42615
-#> BC_93485 30438
-#> BC_81579 25799
-#> BC_468335 24958
-#> BC_257382 24460
-#> BC_21013 23108
-#>
-#> $TopBarcodeCounts$`S6-1`
-#> S6-1
-#> BC_79755 1282572
-#> BC_8419 1123900
-#> BC_124796 996596
-#> BC_4564 434228
-#> BC_400391 84518
-#> BC_31610 44921
-#> BC_1478 31005
-#> BC_90135 30404
-#> BC_388103 28921
-#>
-#> $TopBarcodeCounts$`S6-2`
-#> S6-2
-#> BC_79755 1344442
-#> BC_8419 1117015
-#> BC_124796 1031266
-#> BC_4564 489628
-#> BC_400391 102685
-#> BC_31610 41582
-#> BC_1478 36862
-#> BC_90135 34556
-#> BC_54442 31930
-#> BC_388103 30013
-#>
-#> $TopBarcodeCounts$`S7-1`
-#> S7-1
-#> BC_53234 921435
-#> BC_54442 710031
-#> BC_142024 472357
-#> BC_140320 350076
-#> BC_93485 324557
-#> BC_124796 197590
-#> BC_23544 186585
-#> BC_8419 179578
-#> BC_324711 166985
-#> BC_159570 116366
-#> BC_58978 106125
-#> BC_90135 92285
-#> BC_345889 60307
-#> BC_4564 56816
-#> BC_102160 52674
-#> BC_400391 42639
-#>
-#> $TopBarcodeCounts$`S7-2`
-#> S7-2
-#> BC_53234 886421
-#> BC_54442 680000
-#> BC_142024 434889
-#> BC_140320 331549
-#> BC_93485 301678
-#> BC_124796 177503
-#> BC_23544 166526
-#> BC_8419 163482
-#> BC_324711 147268
-#> BC_159570 104165
-#> BC_58978 87248
-#> BC_90135 85151
-#> BC_4564 55719
-#> BC_345889 55079
-#> BC_102160 48773
-#> BC_400391 38887
-#>
-#> $TopBarcodeCounts$`S8-1`
-#> S8-1
-#> BC_142024 1234236
-#> BC_90135 711120
-#> BC_58978 347497
-#> BC_93485 266947
-#> BC_363879 206203
-#> BC_4531 151017
-#> BC_205581 141328
-#> BC_118640 139500
-#> BC_79755 119797
-#> BC_31610 102078
-#> BC_1607 99159
-#> BC_82758 77715
-#> BC_389078 49526
-#> BC_194823 49489
-#> BC_251167 47114
-#> BC_77209 43860
-#> BC_68847 43534
-#> BC_102160 35811
-#> BC_4173 27438
-#> BC_4564 23411
-#>
-#> $TopBarcodeCounts$`S8-2`
-#> S8-2
-#> BC_142024 1098417
-#> BC_90135 613893
-#> BC_58978 269454
-#> BC_93485 215752
-#> BC_363879 166500
-#> BC_4531 125332
-#> BC_205581 115375
-#> BC_118640 111091
-#> BC_79755 105974
-#> BC_1607 80651
-#> BC_31610 79449
-#> BC_82758 63339
-#> BC_194823 47934
-#> BC_251167 43484
-#> BC_389078 41208
-#> BC_68847 40176
-#> BC_77209 35932
-#> BC_102160 27346
-#> BC_4173 24198
-#> BC_4564 22430
-#> BC_94579 18367
-#>
-#> $TopBarcodeCounts$`S9-1`
-#> S9-1
-#> BC_79755 684599
-#> BC_4198 412438
-#> BC_81579 222908
-#> BC_560839 190175
-#> BC_118640 190072
-#> BC_345889 174338
-#> BC_400391 173891
-#> BC_1607 124662
-#> BC_319105 106683
-#> BC_35704 97669
-#> BC_205581 96776
-#> BC_90135 55050
-#> BC_124796 54709
-#> BC_8419 41751
-#> BC_142024 41208
-#> BC_561471 36418
-#> BC_68847 26528
-#> BC_19146 26470
-#> BC_78912 18539
-#>
-#> $TopBarcodeCounts$`S9-2`
-#> S9-2
-#> BC_79755 678991
-#> BC_4198 420103
-#> BC_81579 232056
-#> BC_118640 198440
-#> BC_560839 187828
-#> BC_345889 177297
-#> BC_400391 169731
-#> BC_1607 132863
-#> BC_319105 107906
-#> BC_35704 100753
-#> BC_205581 89183
-#> BC_90135 56985
-#> BC_124796 51211
-#> BC_142024 47093
-#> BC_8419 40711
-#> BC_561471 35227
-#> BC_19146 32473
-#> BC_68847 29591
-#> BC_78912 20199
-#>
-#>
-
calcReplicateCorr.Rd
Calculate and return list of correlation between paired technical replicates in a dataset
-DGEList object containing technical replicates to be compared
grouping variable from metadata containing technical replicate information
threshold distinguishing good vs bad correlation between technical replicates
which values to return. One of "good", "bad", "all"
data(test.dge)
-calcReplicateCorr(test.dge, group = "group")
-#> 10_High_dose 11_Vehicle 12_Vehicle 13_Low_dose 14_Low_dose 15_Low_dose
-#> 0.9998575 0.9988328 0.9992805 0.9999569 0.9999779 0.9998939
-#> 16_Low_dose 17_High_dose 18_Vehicle 1_High_dose 2_High_dose 3_High_dose
-#> 0.9998965 0.9998268 0.9995628 0.9990491 0.9975029 0.9997352
-#> 4_Vehicle 5_Low_dose 6_High_dose 7_Vehicle 8_Vehicle 9_Low_dose
-#> 0.9975620 0.9999389 0.9994985 0.9997088 0.9992879 0.9997057
-#> T0
-#> 0.9983838
-
cluster_cormat.Rd
cluster a correlation matrix using hierarchical clustering
-collapseReplicates.Rd
Collapse technical replicates in a DGEList object by mean or sum. -Modified from collapseReplicates function from DESeq2 package to accept DGEList objects and to allow collapsing replicated by mean or sum.
-collapseReplicates(
- object,
- groupby,
- run,
- renameCols = TRUE,
- show_reps = TRUE,
- by = "mean"
-)
DGEList object containing raw or normalised barcode counts with replicate grouping info in object metadata
a character vector of containing grouping information. Must be as long as the columns of object. Can pass a metadata column from object.
optional, the names of each unique column in object. if provided, a new column runsCollapsed will be added to the colData which pastes together the names of run
boolean. whether to rename the columns of the returned object using the levels of the grouping factor
boolean. print replicate column names to console?
collapse replicates by mean or sum
data(test.dge)
-collapseReplicates(test.dge, groupby = test.dge$samples$group, by = "mean")
-#> $`10_High_dose`
-#> [1] 3 4
-#>
-#> $`11_Vehicle`
-#> [1] 5 6
-#>
-#> $`12_Vehicle`
-#> [1] 7 8
-#>
-#> $`13_Low_dose`
-#> [1] 9 10
-#>
-#> $`14_Low_dose`
-#> [1] 11 12
-#>
-#> $`15_Low_dose`
-#> [1] 13 14
-#>
-#> $`16_Low_dose`
-#> [1] 15 16
-#>
-#> $`17_High_dose`
-#> [1] 17 18
-#>
-#> $`18_Vehicle`
-#> [1] 19 20
-#>
-#> $`1_High_dose`
-#> [1] 21 22
-#>
-#> $`2_High_dose`
-#> [1] 23 24
-#>
-#> $`3_High_dose`
-#> [1] 25 26
-#>
-#> $`4_Vehicle`
-#> [1] 27 28
-#>
-#> $`5_Low_dose`
-#> [1] 29 30
-#>
-#> $`6_High_dose`
-#> [1] 31 32
-#>
-#> $`7_Vehicle`
-#> [1] 33 34
-#>
-#> $`8_Vehicle`
-#> [1] 35 36
-#>
-#> $`9_Low_dose`
-#> [1] 37 38
-#>
-#> $T0
-#> [1] 1 2
-#>
-#> An object of class "DGEList"
-#> $samples
-#> Sample Experiment Group PCR_Replicate Treatment
-#> 10_High_dose S10-1 test_01 10_High_dose 1 High_dose
-#> 11_Vehicle S11-1 test_01 11_Vehicle 1 Vehicle
-#> 12_Vehicle S12-1 test_01 12_Vehicle 1 Vehicle
-#> 13_Low_dose S13-1 test_01 13_Low_dose 1 Low_dose
-#> 14_Low_dose S14-1 test_01 14_Low_dose 1 Low_dose
-#> group lib.size norm.factors
-#> 10_High_dose 10_High_dose 4114186 1
-#> 11_Vehicle 11_Vehicle 2907500 1
-#> 12_Vehicle 12_Vehicle 4202337 1
-#> 13_Low_dose 13_Low_dose 4513559 1
-#> 14_Low_dose 14_Low_dose 4503490 1
-#> 14 more rows ...
-#>
-#> $counts
-#> Samples
-#> Tags 10_High_dose 11_Vehicle 12_Vehicle 13_Low_dose 14_Low_dose 15_Low_dose
-#> BC_1 0 0 0 0 0 0
-#> BC_13 0 0 0 0 0 0
-#> BC_99 0 0 0 0 0 0
-#> BC_120 0 0 0 0 0 0
-#> BC_351 0 0 0 0 0 0
-#> Samples
-#> Tags 16_Low_dose 17_High_dose 18_Vehicle 1_High_dose 2_High_dose
-#> BC_1 0 0 0 0 0
-#> BC_13 0 0 0 0 0
-#> BC_99 0 0 0 155 0
-#> BC_120 0 0 0 0 0
-#> BC_351 0 0 0 0 0
-#> Samples
-#> Tags 3_High_dose 4_Vehicle 5_Low_dose 6_High_dose 7_Vehicle 8_Vehicle
-#> BC_1 0 0 0 0 0 0
-#> BC_13 0 0 0 0 0 0
-#> BC_99 0 0 0 0 0 0
-#> BC_120 0 0 0 0 0 0
-#> BC_351 0 0 0 0 0 0
-#> Samples
-#> Tags 9_Low_dose T0
-#> BC_1 0 127
-#> BC_13 0 1146
-#> BC_99 0 1354
-#> BC_120 0 234
-#> BC_351 0 0
-#> 1634 more rows ...
-#>
-
-
compareAbundance.Rd
Takes a dataframe of barcode counts, -computes the mean abundance of each barcode for two specific conditions, -then do a line plot for both conditions
-countBarcodeReads.Rd
Count number of occurences of each barcode in the reference library
-createBarcodeObj.Rd
generate a DGEList object containing barcode counts and sample metadata from raw counts files
-extractBAM.Rd
Barcode extraction function for BAM alignment files
-extractBAM(
- bam,
- barcode_pattern,
- constant = "",
- yieldSize = 1e+06,
- outfile = NULL
-)
BAM file containing barcoded reads
Pattern to search for in the reads
The constant region flanking the barcode, two constant regions can be input as a -character vector. This should be set if the constant region is part of the barcode_pattern. -Up to two constant regions can be set e.g. c("ACTG","TACG")
How many lines of input file to stream at each pass
Optional. path to save parsed reads as output file
extractBarcodeReads.Rd
Identify and extract reads containing DNA barcodes from a FASTQ or BAM alignment file
-extractBarcodeReads(
- infile,
- barcode_pattern = "[ACTG][ACTG][GC][AT][GC][ACTG][ACTG][AT][GC][AT]",
- constant = NULL,
- yieldSize = 1e+06,
- outfile = NULL,
- clean = TRUE,
- verbose = FALSE,
- overwrite = TRUE
-)
Input fastq or bam file containing barcoded reads
Pattern to search for in the reads
The constant region flanking the barcode, two constant regions can be input as a -character vector. This should be set if the constant region is part of the barcode_pattern. -Up to two constant regions can be set e.g. c("ACTG","TACG")
How many lines of input file to stream at each pass
Optional. path to save parsed reads as output file
Logical. remove previous output files generated by extractBarcodeReads before current run
Logical. print detailed output to console
Logical. Overwrite previous output files generated by extractBarcodeReads
Returns a data-frame containing the read ID, the 10X cell ID, 10X umi, -barcode DNA sequence and barcode ID.
-test.fq <- system.file("extdata", "test_extract.fastq.gz", package = "bartools")
-extractBarcodeReads(infile = test.fq, barcode_pattern = "ACTG")
-#> Error in extractBarcodeReads(infile = test.fq, barcode_pattern = "ACTG"): could not find function "extractBarcodeReads"
-test.bam <- system.file("extdata", "test_extract_anno.bam", package = "bartools")
-extractBarcodeReads(infile = test.bam, barcode_pattern = "ACTG")
-#> Error in extractBarcodeReads(infile = test.bam, barcode_pattern = "ACTG"): could not find function "extractBarcodeReads"
-
extractFASTQ.Rd
Barcode extraction function for raw FASTQ files
-extractFASTQ(
- fastq,
- barcode_pattern,
- constant = NULL,
- outfile = NULL,
- block_size = 1e+06,
- verbose = FALSE,
- overwrite = FALSE
-)
REQUIRED. Path to input fastq file
REQUIRED. Pattern to search for in the reads.
The constant region(s) flanking the barcode. This should be set if the -constant region is part of the barcode_pattern. -Up to two constant regions can be set e.g. constant = c("ACTG","TACG")
OPTIONAL. path to save filtered reads as output fasta file with read name as sequence ID
Number of reads to load into memory per chunk. Default = 5e5
Boolean. Show verbose output from ShortRead? Default = FALSE.
Boolean. Overwrite output files? Default = FALSE.
getDominantBarcodes.Rd
Takes a DGEList or dataframe of barcode counts, -computes the percentage abundance of each barcode within each sample -then returns a list of barcodes meeting a threshold abundance per sample
-DGEList object or dataframe containing raw / normalised counts of barcodes
percentage abundance threshold to call dominant barcodes
getDominantBarcodes
-get names of barcodes over a given percentage frequency per sample
-data(test.dge)
-getDominantBarcodes(test.dge, pct.thresh = 5)
-#> $`T0-1`
-#> [1] "BC_245016" "BC_121651"
-#>
-#> $`T0-2`
-#> [1] "BC_245016" "BC_121651"
-#>
-#> $`S10-1`
-#> [1] "BC_8419" "BC_124796"
-#>
-#> $`S10-2`
-#> [1] "BC_8419" "BC_124796"
-#>
-#> $`S11-1`
-#> [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978"
-#>
-#> $`S11-2`
-#> [1] "BC_53234" "BC_205581" "BC_90135" "BC_172626" "BC_58978"
-#>
-#> $`S12-1`
-#> [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755"
-#>
-#> $`S12-2`
-#> [1] "BC_389078" "BC_159570" "BC_135438" "BC_500780" "BC_79755"
-#>
-#> $`S13-1`
-#> [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382"
-#>
-#> $`S13-2`
-#> [1] "BC_8419" "BC_124796" "BC_102160" "BC_257382"
-#>
-#> $`S14-1`
-#> [1] "BC_90135" "BC_388103" "BC_31610"
-#>
-#> $`S14-2`
-#> [1] "BC_90135" "BC_388103" "BC_31610"
-#>
-#> $`S15-1`
-#> [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419"
-#>
-#> $`S15-2`
-#> [1] "BC_1478" "BC_94579" "BC_124796" "BC_8419"
-#>
-#> $`S16-1`
-#> [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-#>
-#> $`S16-2`
-#> [1] "BC_53234" "BC_79755" "BC_140320" "BC_31610" "BC_248880" "BC_1478"
-#>
-#> $`S17-1`
-#> [1] "BC_183691" "BC_90135" "BC_400391"
-#>
-#> $`S17-2`
-#> [1] "BC_183691" "BC_90135" "BC_400391"
-#>
-#> $`S18-1`
-#> [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_93485" "BC_70225"
-#>
-#> $`S18-2`
-#> [1] "BC_49397" "BC_91412" "BC_159570" "BC_62602" "BC_70225" "BC_93485"
-#>
-#> $`S1-1`
-#> [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234" "BC_400391"
-#> [7] "BC_142112"
-#>
-#> $`S1-2`
-#> [1] "BC_79755" "BC_102160" "BC_59493" "BC_23361" "BC_53234"
-#>
-#> $`S2-1`
-#> [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-#>
-#> $`S2-2`
-#> [1] "BC_248880" "BC_65104" "BC_9141" "BC_1478" "BC_31610" "BC_79755"
-#>
-#> $`S3-1`
-#> [1] "BC_79755" "BC_142024" "BC_102160"
-#>
-#> $`S3-2`
-#> [1] "BC_79755" "BC_142024" "BC_102160" "BC_183691"
-#>
-#> $`S4-1`
-#> [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-#>
-#> $`S4-2`
-#> [1] "BC_53234" "BC_58978" "BC_62602" "BC_68847" "BC_140320" "BC_79755"
-#> [7] "BC_327422"
-#>
-#> $`S5-1`
-#> [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607"
-#>
-#> $`S5-2`
-#> [1] "BC_561471" "BC_118640" "BC_59493" "BC_1607" "BC_31610"
-#>
-#> $`S6-1`
-#> [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564"
-#>
-#> $`S6-2`
-#> [1] "BC_79755" "BC_8419" "BC_124796" "BC_4564"
-#>
-#> $`S7-1`
-#> [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485"
-#>
-#> $`S7-2`
-#> [1] "BC_53234" "BC_54442" "BC_142024" "BC_140320" "BC_93485"
-#>
-#> $`S8-1`
-#> [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485"
-#>
-#> $`S8-2`
-#> [1] "BC_142024" "BC_90135" "BC_58978" "BC_93485"
-#>
-#> $`S9-1`
-#> [1] "BC_79755" "BC_4198" "BC_81579" "BC_560839" "BC_118640" "BC_345889"
-#> [7] "BC_400391"
-#>
-#> $`S9-2`
-#> [1] "BC_79755" "BC_4198" "BC_81579" "BC_118640" "BC_560839" "BC_345889"
-#> [7] "BC_400391"
-#>
-
get_upper_tri.Rd
change lower triangle values in a mirrored matrix to NA
-annotateBarcodeReads()
- calcDivIndexes()
- calcPercentileBarcodes()
- calcReplicateCorr()
- cluster_cormat()
- collapseReplicates()
- compareAbundance()
- countBarcodeReads()
- createBarcodeObj()
- extractBAM()
- extractBarcodeReads()
- extractFASTQ()
- getDominantBarcodes()
- get_upper_tri()
- mapBarcodeReads()
- normaliseCounts()
- plotAbundanceLines()
- plotBARtabFilterQC()
- plotBARtabMapQC()
- plotBarcodeBoxplot()
- plotBarcodeBubble()
- plotBarcodeCorrelation()
- plotBarcodeCounts()
- plotBarcodeCumSum()
- plotBarcodeDistance()
- plotBarcodeHeatmap()
- plotBarcodeHistogram()
- plotBarcodePCA()
- plotBarcodeRegression()
- plotBarcodeTimeseries()
- plotDetectedBarcodes()
- plotLibraryCumSum()
- plotLibraryDiversity()
- plotOrderedBubble()
- plotReadCounts()
- processBarcodeLibrary()
- test.counts
- test.dge
- thresholdCounts()
- mapBarcodeReads.Rd
Map reads containing a lintraceR DNA barcode to a barcode reference library/fasta and return CellID:lintracer barcode ID annotations
-mapBarcodeReads(
- reads,
- bowtie_index = NULL,
- mismatches = 2,
- threads = 4,
- outdir = getwd(),
- prefix = "map_barcode_reads",
- cleanup = TRUE,
- reference_fasta = NULL
-)
Dataframe from extractBarcodeReads containing barcode reads
Path to bowtie index of barcode reference library. Include index prefix.
Number of mismatches allowed in bowtie for read mapping
Number of CPU threads for bowtie to use
Optional. save output to directory
Optional. prefix to add to output file
Logical. Remove intermediate files generated by mapBarcodeReads
Optional. Fasta file of reference barcode library for alignment. Use instead of bowtie_index.
Returns a data-frame containing the read ID, the 10X cell ID, 10X umi, lintraceR DNA -barcode sequence mapped to the lintraceR DNA barcode ID.
-load(system.file("extdata", "test_map.rda", package = "bartools"))
-#> Warning: cannot open compressed file '', probable reason 'No such file or directory'
-#> Error in readChar(con, 5L, useBytes = TRUE): cannot open the connection
-test.ref <- system.file("extdata", "barcode_lib_reference_test.fasta", package = "bartools")
-mapBarcodeReads(reads = test.map, reference_fasta = test.ref, outdir = tempdir(), prefix = "map")
-#> Error in mapBarcodeReads(reads = test.map, reference_fasta = test.ref, outdir = tempdir(), prefix = "map"): could not find function "mapBarcodeReads"
-
normaliseCounts.Rd
Normalise barcode counts within a DGEList object
-DGEList object containing raw barcode counts to be normalised
method of normalisation
Threshold to apply to counts before normalisation
data(test.dge)
-normaliseCounts(test.dge, method = "cpm", threshold = 0)
-#> Error in normaliseCounts(test.dge, method = "cpm", threshold = 0): method argument must be one of CPM, RLE, TMM, upperquartile or TMMwsp
-
-
plotAbundanceLines.Rd
Takes a dataframe of barcode counts, -computes the median abundance of each barcode for two specific conditions, -then do a line plot for both conditions
-plotAbundanceLines(
- dge,
- condition,
- condition_names,
- plot_type = "DEG",
- keep = 0.9,
- nbarcode = 10,
- title = ""
-)
DGEList object containing raw counts of barcodes
sample condition of interest
vector of size 2. Gives the name of the two conditions in conditions to plot
which barcodes are plotted. 'DEG' plot the 10 most differentially abundant barcodes. -'counts' plots the 5 top highest abundant barcodes for each condition. -'log2FC' plots the barcodes with the highest absolute log2FC (number of barcodes to plot is given by nbarcode)
percentage of highest abundant barcode to keep. Rest of barcodes is filtered and not used in plots.
number of barcodes to plot when using 'log2FC' plot type.
desired plot title
plotBARtabFilterQC.Rd
Plot filtered read percentages from a BARtab run folder
-plotBARtabFilterQC(
- dir = NULL,
- recursive = T,
- pattern.log = "*filter.log",
- pattern.value = "reads",
- full.names = T,
- normalised = F,
- plot = T,
- title = "BARtab Filter QC"
-)
directory where BARtab was successfuly run on barcode count datasets
Logical. TRUE will recurse regex search into subdirectories#'
regex string to specify filter stage log files
grep on this string in log files
Logical. Return full names of files detected by regex search
Logical. log10 normalise counts
Logical. Generate plots. False returns raw data
Optional. title of plots.
plotBARtabMapQC.Rd
Plot mapped read percentages from a BARtab run folder
-plotBARtabMapQC(
- dir = NULL,
- recursive = T,
- pattern.log = "*bowtie.log",
- full.names = T,
- plot = T,
- title = "BARtab Mapping QC"
-)
directory where BARtab was successfuly run on barcode count datasets
Logical. TRUE will recurse regex search into subdirectories#'
regex string to specify filter stage log files
Logical. Return full names of files detected by regex search
Logical. Generate plots. False returns raw data
Optional. title of plots.
plotBarcodeBoxplot.Rd
Takes a dataframe of barcode counts, -select specific barcodes in the dataframe -and boxplot their counts
-plotBarcodeBubble.Rd
Generate proportional bubbleplots from raw count object with barcodes labelled above a specified threshold
-plotBarcodeBubble(
- counts.obj,
- labels = T,
- proportion.cutoff = 10,
- name = "Proportional Bubble Plot"
-)
dataframe containing raw counts of barcodes
Boolean. print barcode labels?
barcodes represented at a percentage within any sample above this threshold will be labelled
desired plot title
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeBubble(test.counts, labels = TRUE, proportion.cutoff = 10)
-#> Error in as.data.frame(counts.obj): object 'test.counts' not found
-plotBarcodeBubble(test.counts, labels = FALSE, proportion.cutoff = 10)
-#> Error in as.data.frame(counts.obj): object 'test.counts' not found
-
plotBarcodeCorrelation.Rd
Plot sample correlation between barcode sets / samples
-plotBarcodeCorrelation(
- counts,
- method = "pearson",
- upper = T,
- clustered = T,
- name = "Sample Correlation"
-)
matrix/dataframe containing raw or normalised counts
correlation metric to use. Refer to stats::cor for available options
Logical. plot only the upper half of the matrix
Logical. cluster rows and columns of matrix
title of plot
plotBarcodeCounts.Rd
Simple plot of total read counts per barcode in library
-data.frame of barcode count x sample
Logical. Order the dataset be decreasing abundance
Logical. log10 transform the data. Adds a pseudocount of 1
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeCounts(test.counts)
-#> Error in is.data.frame(x): object 'test.counts' not found
-plotBarcodeCounts(test.counts, order = TRUE)
-#> Error in is.data.frame(x): object 'test.counts' not found
-plotBarcodeCounts(test.counts, order = TRUE, log10 = TRUE)
-#> Error in is.data.frame(x): object 'test.counts' not found
-
plotBarcodeCumSum.Rd
Takes a dataframe of the barcode cpm counts, calculate the relative abundance of each barcode in each sample. -Then, barcodes of all samples are ordered for sample1 in decreasing order and the cumulative sum is calculated for -each sample. Cumulative sum is then plotted against sample1.
-Dataframe containing cpm counts
sample to compare others against
vector of sample names to be plotted against sample1
plotBarcodeCumSum
-Plot the cumulative sum of barcode cpm counts for a list of samples against and ordered by sample1.
-data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeCumSum(counts = test.counts, sample1 = 'T0-1', samples = c('T0-1','S9-1', 'S8-1'))
-#> Error in plotBarcodeCumSum(counts = test.counts, sample1 = "T0-1", samples = c("T0-1", "S9-1", "S8-1")): object 'test.counts' not found
-
plotBarcodeDistance.Rd
Plot sample distances between barcode sets / samples
-plotBarcodeDistance(
- counts,
- method = "euclidean",
- upper = T,
- clustered = T,
- name = "Sample Distances"
-)
matrix/dataframe containing raw or normalised counts
distance metric to use. Refer to stats::dist for available options
Logical. plot only the upper half of the matrix
Logical. cluster rows and columns of matrix
title of plot
plotBarcodeHeatmap.Rd
Takes a dataframe of the barcode counts, and selects the N most abundant barcodes per sample. -Most abundant barcodes are gathered in a list and a heatmap for those barcodes is plotted for all samples. -Stars indicate the most abundant barcodes per sample.
-Dataframe containing cpm counts
String of sample 1 name (used to ranked barcode abundance)
String of the heatmap scale name
Boolean to show barcode names on the heatmap
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeHeatmap(test.counts, 10,'Counts',FALSE)
-#> Error in is.data.frame(x): object 'test.counts' not found
-
plotBarcodeHistogram.Rd
Generate stacked barcode plots showing proportion from raw count object.
-plotBarcodeHistogram(
- counts.obj,
- sample = NULL,
- top = 10,
- name = "Barcode Histogram"
-)
dataframe containing raw counts of barcodes
desired name of sample to order all barcodes against
top n barcodes in sample to color, all other barcodes are shown in grey
desired plot title
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeHistogram(test.counts, sample = "T0-1", top = 10, name = "Barcode Histogram")
-#> Error in sweep(counts.obj, 2, colSums(counts.obj), `/`): object 'test.counts' not found
-
plotBarcodePCA.Rd
Takes an edgeR DGEList object contining barcode data or a dataframe of the barcode cpm counts and performs PCA. -Then, plots the first two dimensions. -Modified from DESeq2 package plotPCA function
-plotBarcodePCA(
- object,
- intgroup = "condition",
- col = "group",
- ntop = 500,
- returnData = FALSE,
- batch = NULL
-)
DGEList or dataframe containing normalised barcode counts
vector of grouping variables of interest
color group for plot, must be one of intgroup
number of top most variable genes to be used in PCA calculation
Logical. return a data.frame of PCA calculation?
metadata category indicating source of batch effects. Will be used in limma removeBatchEffect function prior to PCA
data(test.dge)
-plotBarcodePCA(test.dge, intgroup = "group", ntop = 500, returnData = FALSE, batch = NULL)
-
-
plotBarcodeRegression.Rd
Generate a linear regression scatterplot for two sets of sample counts.
-plotBarcodeRegression(
- dge,
- samp1 = NULL,
- samp2 = NULL,
- title = NULL,
- trendline = T,
- trans = NULL,
- rug = F
-)
DGEList object containing grouping variable to fit linear model
name of sample 1. must be one of colnames(dge)
name of sample 2. must be one of colnames(dge)
desired name of output plot
Logical. Include linear trendline using stat_smooth()
From ggplot2. For continuous scales, the name of a transformation object or the object itself.
Logical. Include geom_rug density information on the axes?
data(test.dge)
-plotBarcodeRegression(dge = test.dge, samp1 = "T0-1", samp2 = "T0-2")
-#> `geom_smooth()` using formula = 'y ~ x'
-
-
plotBarcodeTimeseries.Rd
Generate proportional timeseries plot from raw / normalised barcode count object.
-dataframe containing raw counts of barcodes
desired plot title
RNG seed
number of top barcodes per sample to plot
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotBarcodeTimeseries(test.counts[,1:4], name = "Proportional Timeseries Plot", seed = 5, top = 10)
-#> Error in as.data.frame(counts.obj): object 'test.counts' not found
-
plotDetectedBarcodes.Rd
Plot the total number of barcodes detected in a sample
-plotDetectedBarcodes(
- counts,
- percentile = 0.95,
- plot = T,
- sample.order = NULL,
- group = NULL,
- title = NULL
-)
DGEList or dataframe containing raw or normalised barcode counts
desired percentile value. 95th percentile by default
Logical. plot data instead of returning counts table.
desired ordering of the samples on the plot
grouping field in dgelist$samples to color samples by
desired plot title
data(test.dge)
-plotDetectedBarcodes(test.dge, percentile = .95)
-#> Warning: Use of `percentile.df$Sample` is discouraged.
-#> ℹ Use `Sample` instead.
-#> Warning: Use of `percentile.df$Barcodes` is discouraged.
-#> ℹ Use `Barcodes` instead.
-#> Warning: Use of `percentile.df$Barcodes` is discouraged.
-#> ℹ Use `Barcodes` instead.
-#> Warning: Use of `percentile.df$Barcodes` is discouraged.
-#> ℹ Use `Barcodes` instead.
-#> Warning: Use of `percentile.df$Sample` is discouraged.
-#> ℹ Use `Sample` instead.
-
-plotDetectedBarcodes(test.dge, plot = FALSE)
-#> Sample Barcodes
-#> 1 T0-1 593
-#> 2 T0-2 590
-#> 3 S10-1 3
-#> 4 S10-2 4
-#> 5 S11-1 19
-#> 6 S11-2 20
-#> 7 S12-1 14
-#> 8 S12-2 14
-#> 9 S13-1 10
-#> 10 S13-2 11
-#> 11 S14-1 6
-#> 12 S14-2 6
-#> 13 S15-1 7
-#> 14 S15-2 7
-#> 15 S16-1 19
-#> 16 S16-2 20
-#> 17 S17-1 5
-#> 18 S17-2 6
-#> 19 S18-1 27
-#> 20 S18-2 27
-#> 21 S1-1 14
-#> 22 S1-2 15
-#> 23 S2-1 12
-#> 24 S2-2 11
-#> 25 S3-1 10
-#> 26 S3-2 10
-#> 27 S4-1 25
-#> 28 S4-2 26
-#> 29 S5-1 11
-#> 30 S5-2 12
-#> 31 S6-1 9
-#> 32 S6-2 10
-#> 33 S7-1 16
-#> 34 S7-2 16
-#> 35 S8-1 20
-#> 36 S8-2 21
-#> 37 S9-1 19
-#> 38 S9-2 19
-
plotLibraryCumSum.Rd
Takes a dataframe of barcode counts, -computes the median abundance of each barcode for two specific conditions, -then do a line plot for both conditions
-plotLibraryDiversity.Rd
Takes a dataframe of barcode counts, -computes and plots the abundance of each barcode in the library sample
-plotOrderedBubble.Rd
Generate ordered proportional bubbleplots from raw count object with barcodes labelled above a specified threshold
-plotOrderedBubble(
- counts.obj,
- labels = T,
- name = "Proportional Bubble Plot",
- orderSample = NULL,
- proportion.cutoff = 10,
- colorDominant = FALSE
-)
dataframe containing raw counts of barcodes. assumes barcodes as rownames.
logical. Print barcode labels
desired plot title
name of sample to order by
barcodes represented at a percentage within any sample above this threshold will be labelled
only color clones with frequency above proportion.cutoff. Others colored grey
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotOrderedBubble(test.counts, orderSample = "T0-1")
-#> Error in methods::is(counts): object 'counts' not found
-
plotReadCounts.Rd
Simple plot of total read counts per sample
-plotReadCounts(
- counts,
- group = NULL,
- log10 = FALSE,
- legend = TRUE,
- order = TRUE
-)
data.frame of barcode count x sample
a character vector of containing grouping information. Must be equal the number of columns of counts. Can pass a metadata column from DGEList object.
Boolean. log10 transform output?
Boolean. Include legend?
Boolean. Order samples by group?
data(test.counts)
-#> Warning: data set ‘test.counts’ not found
-plotReadCounts(test.dge$counts, group = test.dge$samples$Group)
-
-
-
processBarcodeLibrary.Rd
process barcode reference file from raw sequencing datasets
-processBarcodeLibrary(
- file = NULL,
- samplename = "Barcode",
- cutoff = 10,
- header = FALSE,
- outdir = tempdir()
-)
path to starcode output for barcode library
name of reference library. Will be prefixed to each barcode in the reference
rowsum cutoff defining barcodes to keep in the reference library
Logical. Does the input file contain a header line
Desired output directory to save library files
load(system.file("extdata", "test_raw_lib.rda", package = "bartools"))
-#> Warning: cannot open compressed file '', probable reason 'No such file or directory'
-#> Error in readChar(con, 5L, useBytes = TRUE): cannot open the connection
-processBarcodeLibrary(file = test.raw.lib, samplename = "Barcode", outdir = tempdir())
-#> Error in processBarcodeLibrary(file = test.raw.lib, samplename = "Barcode", outdir = tempdir()): object 'test.raw.lib' not found
-
test.counts.Rd
A dataset containing normalised count information for 1639 hypothetical barcodes -in 38 hypothetical samples
-thresholdCounts.Rd
Threshold dataframe to a given level and return number of barcodes meeting threshold in each -sample.
-