-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathA_Pathfinder.py
375 lines (313 loc) · 13.6 KB
/
A_Pathfinder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import pygame
import sys
import heapq
import random
import numpy as np
from numba import jit
import threading
from concurrent.futures import ThreadPoolExecutor
from dataclasses import dataclass, field
from typing import Any
# Constants
WINDOW_SIZE = 800
CELL_SIZE = 16
GRID_SIZE = WINDOW_SIZE // CELL_SIZE
ANIMATION_SPEED = 10
MAX_THREADS = 4
SEARCH_BATCH_SIZE = 50
# Colors
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
BLUE = (0, 0, 255)
PURPLE = (147, 0, 211)
VISITED_COLOR = (180, 180, 250)
PATH_COLOR = (255, 165, 0)
SECONDARY_PATH_COLOR = (100, 200, 100)
@dataclass (order=True)
class PrioritizedCell:
priority: float
cell: Any = field (compare=False)
cost: float = field (compare=False)
@jit (nopython=True)
def calculate_heuristic(current_pos, goal_pos, weight=1.0):
dx = abs (current_pos [0] - goal_pos [0])
dy = abs (current_pos [1] - goal_pos [1])
return weight * (dx + dy) + (1.414 - 2) * min (dx, dy)
class Cell:
def __init__(self, row, col):
self.row = row
self.col = col
self.walls = {'top': True, 'right': True, 'bottom': True, 'left': True}
self.visited = False
self.in_path = False
self.in_secondary_path = False
self.is_start = False
self.is_goal = False
self.being_explored = False
def __eq__(self, other):
if not isinstance (other, Cell):
return False
return self.row == other.row and self.col == other.col
def __hash__(self):
return hash ((self.row, self.col))
class Maze:
def __init__(self):
self.grid = [[Cell (i, j) for j in range (GRID_SIZE)] for i in range (GRID_SIZE)]
self.start = self.grid [1] [1]
self.goal = self.grid [GRID_SIZE - 2] [GRID_SIZE - 2]
self.start.is_start = True
self.goal.is_goal = True
self.path = []
self.explored = set ()
self.lock = threading.Lock ()
def _get_valid_neighbors(self, row, col):
"""Get valid neighbors for maze generation"""
neighbors = []
directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]
for dy, dx in directions:
new_row, new_col = row + dy, col + dx
if (0 <= new_row < GRID_SIZE and
0 <= new_col < GRID_SIZE and
not self.grid [new_row] [new_col].visited):
neighbors.append ((new_row, new_col))
return neighbors
def generate_section(self, start_row, start_col, end_row, end_col):
"""Generate a section of the maze using iterative DFS"""
stack = [(start_row, start_col)]
self.grid [start_row] [start_col].visited = True
while stack:
current_row, current_col = stack [-1]
neighbors = self._get_valid_neighbors (current_row, current_col)
if not neighbors:
stack.pop ()
continue
next_row, next_col = random.choice (neighbors)
# Remove walls between current and next cell
with self.lock:
if next_row > current_row: # Moving down
self.grid [current_row] [current_col].walls ['bottom'] = False
self.grid [next_row] [next_col].walls ['top'] = False
elif next_row < current_row: # Moving up
self.grid [current_row] [current_col].walls ['top'] = False
self.grid [next_row] [next_col].walls ['bottom'] = False
elif next_col > current_col: # Moving right
self.grid [current_row] [current_col].walls ['right'] = False
self.grid [next_row] [next_col].walls ['left'] = False
else: # Moving left
self.grid [current_row] [current_col].walls ['left'] = False
self.grid [next_row] [next_col].walls ['right'] = False
self.grid [next_row] [next_col].visited = True
stack.append ((next_row, next_col))
def generate_maze_parallel(self, screen):
"""Generate maze using multiple threads"""
# Reset visited states
for row in self.grid:
for cell in row:
cell.visited = False
# Define sections for parallel generation
sections = []
section_size = GRID_SIZE // 2
for i in range (0, GRID_SIZE - 1, section_size):
for j in range (0, GRID_SIZE - 1, section_size):
sections.append ((
i, j,
min (i + section_size, GRID_SIZE - 1),
min (j + section_size, GRID_SIZE - 1)
))
# Generate sections in parallel
with ThreadPoolExecutor (max_workers=MAX_THREADS) as executor:
futures = []
for start_row, start_col, end_row, end_col in sections:
futures.append (
executor.submit (self.generate_section, start_row, start_col, end_row, end_col)
)
for future in futures:
future.result ()
# Connect sections
self._connect_sections (sections)
# Reset visited states for pathfinding
for row in self.grid:
for cell in row:
cell.visited = False
self.draw (screen)
def _connect_sections(self, sections):
"""Connect different sections of the maze"""
for i in range (len (sections) - 1):
section1 = sections [i]
section2 = sections [i + 1]
# Create random connections
connection_points = random.randint (1, 3)
for _ in range (connection_points):
if section1 [2] == section2 [0]: # Vertical connection
col = random.randint (section1 [1], section1 [3])
self.grid [section1 [2]] [col].walls ['bottom'] = False
self.grid [section2 [0]] [col].walls ['top'] = False
else: # Horizontal connection
row = random.randint (section1 [0], section1 [2])
self.grid [row] [section1 [3]].walls ['right'] = False
self.grid [row] [section2 [1]].walls ['left'] = False
def bidirectional_a_star(self, screen):
"""Improved A* search with bidirectional search"""
forward_queue = []
backward_queue = []
heapq.heappush (forward_queue, PrioritizedCell (0, self.start, 0))
heapq.heappush (backward_queue, PrioritizedCell (0, self.goal, 0))
forward_visited = {self.start: (None, 0)}
backward_visited = {self.goal: (None, 0)}
while forward_queue and backward_queue:
# Process forward search
current = self._process_search_batch (
forward_queue, forward_visited, backward_visited,
self.goal, screen, True
)
if current:
self._reconstruct_bidirectional_path (
current, forward_visited, backward_visited, screen
)
return
# Process backward search
current = self._process_search_batch (
backward_queue, backward_visited, forward_visited,
self.start, screen, False
)
if current:
self._reconstruct_bidirectional_path (
current, forward_visited, backward_visited, screen
)
return
def _process_search_batch(self, queue, visited, other_visited, goal, screen, is_forward):
"""Process a batch of cells in the search"""
for _ in range (SEARCH_BATCH_SIZE):
if not queue:
return None
current = heapq.heappop (queue).cell
current_cost = visited [current] [1]
if current in other_visited:
return current
current.being_explored = True
self.draw (screen)
pygame.display.flip ()
pygame.time.delay (ANIMATION_SPEED)
current.being_explored = False
for neighbor in self.get_valid_neighbors (current):
new_cost = current_cost + 1
if neighbor not in visited or new_cost < visited [neighbor] [1]:
visited [neighbor] = (current, new_cost)
priority = new_cost + calculate_heuristic (
(neighbor.row, neighbor.col),
(goal.row, goal.col)
)
heapq.heappush (queue, PrioritizedCell (priority, neighbor, new_cost))
neighbor.visited = True
self.explored.add (neighbor)
return None
def _reconstruct_bidirectional_path(self, meeting_point, forward_visited, backward_visited, screen):
"""Reconstruct the path from both directions"""
# Forward path
current = meeting_point
while current in forward_visited and forward_visited [current] [0] is not None:
current.in_path = True
current = forward_visited [current] [0]
self.path.append (current)
self.draw (screen)
pygame.display.flip ()
pygame.time.delay (ANIMATION_SPEED)
# Backward path
current = meeting_point
while current in backward_visited and backward_visited [current] [0] is not None:
current.in_secondary_path = True
current = backward_visited [current] [0]
self.path.append (current)
self.draw (screen)
pygame.display.flip ()
pygame.time.delay (ANIMATION_SPEED)
def get_valid_neighbors(self, cell):
"""Get valid neighbors considering walls"""
neighbors = []
if not cell.walls ['top'] and cell.row > 0:
neighbors.append (self.grid [cell.row - 1] [cell.col])
if not cell.walls ['right'] and cell.col < GRID_SIZE - 1:
neighbors.append (self.grid [cell.row] [cell.col + 1])
if not cell.walls ['bottom'] and cell.row < GRID_SIZE - 1:
neighbors.append (self.grid [cell.row + 1] [cell.col])
if not cell.walls ['left'] and cell.col > 0:
neighbors.append (self.grid [cell.row] [cell.col - 1])
return neighbors
def draw(self, screen):
"""Draw the maze with improved visuals"""
screen.fill (WHITE)
for row in self.grid:
for cell in row:
x = cell.col * CELL_SIZE
y = cell.row * CELL_SIZE
# Draw a cell background
if cell.is_start:
pygame.draw.rect (screen, BLUE, (x, y, CELL_SIZE, CELL_SIZE))
elif cell.is_goal:
pygame.draw.rect (screen, RED, (x, y, CELL_SIZE, CELL_SIZE))
elif cell.in_path:
pygame.draw.rect (screen, PATH_COLOR, (x, y, CELL_SIZE, CELL_SIZE))
elif cell.in_secondary_path:
pygame.draw.rect (screen, SECONDARY_PATH_COLOR, (x, y, CELL_SIZE, CELL_SIZE))
elif cell.being_explored:
pygame.draw.rect (screen, PURPLE, (x, y, CELL_SIZE, CELL_SIZE))
elif cell in self.explored:
pygame.draw.rect (screen, VISITED_COLOR, (x, y, CELL_SIZE, CELL_SIZE))
# Draw walls
if cell.walls ['top']:
pygame.draw.line (screen, BLACK, (x, y), (x + CELL_SIZE, y), 2)
if cell.walls ['right']:
pygame.draw.line (screen, BLACK, (x + CELL_SIZE, y),
(x + CELL_SIZE, y + CELL_SIZE), 2)
if cell.walls ['bottom']:
pygame.draw.line (screen, BLACK, (x, y + CELL_SIZE),
(x + CELL_SIZE, y + CELL_SIZE), 2)
if cell.walls ['left']:
pygame.draw.line (screen, BLACK, (x, y), (x, y + CELL_SIZE), 2)
def main():
pygame.init()
screen = pygame.display.set_mode((WINDOW_SIZE, WINDOW_SIZE))
pygame.display.set_caption("Advanced Maze Solver with Bidirectional A*")
maze = Maze()
maze_generated = False
path_found = False
# Initialize font
font = pygame.font.SysFont(None, 24)
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and not maze_generated:
maze.generate_maze_parallel(screen)
maze_generated = True
elif event.key == pygame.K_RETURN and maze_generated and not path_found:
maze.bidirectional_a_star(screen)
path_found = True
elif event.key == pygame.K_r:
maze = Maze()
maze_generated = False
path_found = False
maze.draw(screen)
# Render tooltips
tooltips = [
"Press SPACE to generate the maze",
"Press ENTER to run the pathfinder",
"Press R to reset"
]
box_width = 300
box_height = 100
box_x = (WINDOW_SIZE - box_width) // 2
box_y = WINDOW_SIZE - box_height - 10
# Draw the tooltip box
pygame.draw.rect(screen, WHITE, (box_x, box_y, box_width, box_height))
pygame.draw.rect(screen, BLACK, (box_x, box_y, box_width, box_height), 2)
for i, tooltip in enumerate(tooltips):
text_surface = font.render(tooltip, True, BLACK)
screen.blit(text_surface, (box_x + 10, box_y + 10 + i * 30))
pygame.display.flip()
pygame.quit()
if __name__ == '__main__':
main ()