-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrisc-v_shell_lib.tlv
208 lines (182 loc) · 8.08 KB
/
risc-v_shell_lib.tlv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/risc-v_shell.tlv
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/main/lib/risc-v_shell_lib.tlv'])
/*
//---------------------------------------------------------------------------------
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// x12 (a2): 10
// x13 (a3): 1..10
// x14 (a4): Sum
//
//m4_asm(ADDI, x14, x0, 0) // Initialize sum register a4 with 0
//m4_asm(ADDI, x12, x0, 1010) // Store count of 10 in register a2.
//m4_asm(ADDI, x13, x0, 1) // Initialize loop count register a3 with 0
// Loop:
//m4_asm(ADD, x14, x13, x14) // Incremental summation
//m4_asm(ADDI, x13, x13, 1) // Increment loop count by 1
//m4_asm(BLT, x13, x12, 1111111111000) // If a3 is less than a2, branch to label named <loop>
// Test result value in x14, and set x31 to reflect pass/fail.
//m4_asm(ADDI, x30, x14, 111111010100) // Subtract expected value of 44 to set x30 to 1 if and only iff the result is 45 (1 + 2 + ... + 9).
//m4_asm(BGE, x0, x0, 0) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0)
//m4_asm_end()*/
m4_test_prog()
m4_define(['M4_MAX_CYC'], 70)
//---------------------------------------------------------------------------------
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
/* verilator lint_on WIDTH */
\TLV
$reset = *reset;
// YOUR CODE HERE
// ...
//PC
$pc[31:0] = >>1$next_pc;
//$next_pc[31:0] = $reset ? 32'b0 : $pc + 32'h4;
//IMem
`READONLY_MEM($pc, $$instr[31:0])
//Dec
$is_u_instr = $instr[6:2] ==? 5'b0x101;
$is_i_instr = $instr[6:2] == 5'b00110 ||
$instr[6:2] == 5'b00100 ||
$instr[6:2] == 5'b00001 ||
$instr[6:2] == 5'b11001 ||
$instr[6:2] == 5'b00000;
$is_r_instr = $instr[6:2] == 5'b01011 ||
$instr[6:2] == 5'b01100 ||
$instr[6:2] == 5'b01110 ||
$instr[6:2] == 5'b10100;
$is_s_instr = $instr[6:2] ==? 5'b0100x;
$is_b_instr = $instr[6:2] == 5'b11000;
$is_j_instr = $instr[6:2] == 5'b11011;
//Inst Field
$rs2[4:0] = $instr[24:20];
$rs1[4:0] = $instr[19:15];
$funct3[2:0] = $instr[14:12];
$rd[4:0] = $instr[11:7];
$opcode[6:0] = $instr[6:0];
$rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr;
$rs1_valid = $is_r_instr || $is_s_instr || $is_b_instr || $is_i_instr;
$rd_valid = $is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr;
$imm_valid = $is_u_instr || $is_s_instr || $is_b_instr || $is_i_instr || $is_j_instr;
$imm[31:0] = $is_i_instr ? { {21{$instr[31]}}, $instr[30:20] } :
$is_s_instr ? { {21{$instr[31]}}, $instr[30:25], $instr[11:7] } :
$is_b_instr ? { {20{$instr[31]}}, $instr[7], $instr[30:25], $instr[11:8], 1'b0 } :
$is_j_instr ? { {12{$instr[31]}}, $instr[19:12], $instr[20], $instr[30:21], 1'b0 } :
32'b0; // Default
`BOGUS_USE($rd $rd_valid $rs1 $rs1_valid $rs2 $rs2_valid $funct3 $opcode $imm $imm_valid...)
//Dec Logic
$dec_bits[10:0] = {$instr[30],$funct3,$opcode};
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_add = $dec_bits == 11'b0_000_0110011;
$is_lui = $dec_bits ==? 11'bx_xxx_0110111;
$is_auipc = $dec_bits ==? 11'bx_xxx_0010111;
$is_jal = $dec_bits ==? 11'bx_xxx_1101111;
$is_jalr = $dec_bits ==? 11'bx_000_1100111;
$is_slti = $dec_bits ==? 11'bx_010_0010011;
$is_sltiu = $dec_bits ==? 11'bx_011_0010011;
$is_xori = $dec_bits ==? 11'bx_100_0010011;
$is_ori = $dec_bits ==? 11'bx_110_0010011;
$is_andi = $dec_bits ==? 11'bx_111_0010011;
$is_slli = $dec_bits == 11'b0_001_0010011;
$is_srli = $dec_bits == 11'b0_101_0010011;
$is_srai = $dec_bits == 11'b1_101_0010011;
$is_sub = $dec_bits == 11'b1_000_0110011;
$is_sll = $dec_bits == 11'b0_001_0110011;
$is_slt = $dec_bits == 11'b0_010_0110011;
$is_sltu = $dec_bits == 11'b0_011_0110011;
$is_xor = $dec_bits == 11'b0_100_0110011;
$is_srl = $dec_bits == 11'b0_101_0110011;
$is_sra = $dec_bits == 11'b1_101_0110011;
$is_or = $dec_bits == 11'b0_110_0110011;
$is_and = $dec_bits == 11'b0_111_0110011;
$is_load = $opcode == 7'b0000011;
`BOGUS_USE($dec_bits $is_beq $is_bne $is_blt $is_bge $is_bltu $is_bgeu $is_addi $is_add...)
//ALU
// SLTU and SLTI (set if less than, unsigned) results:
$sltu_rslt[31:0] = {31'b0, $src1_value < $src2_value};
$sltiu_rslt[31:0] = {31'b0, $src1_value < $imm};
// SRA and SRAI (shift right, arithmetic) results:
// sign-extended src1
$sext_src1[63:0] = { {32{$src1_value[31]}}, $src1_value };
// 64-bit sign-extended results, to be truncated
$sra_rslt[63:0] = $sext_src1 >> $src2_value[4:0];
$srai_rslt[63:0] = $sext_src1 >> $imm[4:0];
$result[31:0] =
$is_andi ? $src1_value & $imm :
$is_ori ? $src1_value | $imm :
$is_xori ? $src1_value ^ $imm :
$is_addi ? $src1_value + $imm :
$is_slli ? $src1_value << $imm[5:0] :
$is_srli ? $src1_value >> $imm[5:0] :
$is_and ? $src1_value & $src2_value :
$is_or ? $src1_value | $src2_value :
$is_xor ? $src1_value ^ $src2_value :
$is_add ? $src1_value + $src2_value :
$is_sub ? $src1_value - $src2_value :
$is_sll ? $src1_value << $src2_value[4:0] :
$is_srl ? $src1_value >> $src2_value[4:0] :
$is_sltu ? $sltu_rslt :
$is_sltiu ? $sltiu_rslt :
$is_lui ? {$imm[31:12], 12'b0} :
$is_auipc ? $pc + $imm :
$is_jal ? $pc + 32'd4 :
$is_jalr ? $pc + 32'd4 :
$is_slt ? (($src1_value[31] == $src2_value[31]) ? $sltu_rslt:
{31'b0, $src1_value[31]}) :
$is_slti ? (($src1_value[31] == $imm[31]) ? $sltiu_rslt:
{31'b0, $src1_value[31]}) :
$is_sra ? $sra_rslt[31:0] :
$is_srai ? $srai_rslt[31:0] :
$is_load ? $src1_value + $imm : // Address for load
$is_s_instr ? $src1_value + $imm : // Address for store
32'b0;
//RF Write
$wr_en = $rd_valid && ($rd != 5'b0);
//Branch Inst
$taken_br =
$is_beq ? $src1_value == $src2_value :
$is_bne ? $src1_value != $src2_value :
$is_blt ? ($src1_value < $src2_value) ^ ($src1_value[31] != $src2_value[31]):
$is_bge ? ($src1_value >= $src2_value) ^ ($src1_value[31] != $src2_value[31]):
$is_bltu ? $src1_value < $src2_value :
$is_bgeu ? $src1_value >= $src2_value :
1'b0;
//jump
$jalr_tgt_pc[31:0] = ($src1_value + $imm) & ~1;
//target PC
$br_tgt_pc[31:0] = $pc + $imm;
//$next_pc[31:0] =
// $reset ? 32'b0 :
// $taken_br ? $br_tgt_pc :
// $pc + 32'h4; // Default to next sequential PC
// Target PC Logic
$next_pc[31:0] =
$reset ? 32'b0 : // Reset condition
($taken_br || $is_jal) ? $br_tgt_pc : // Branch or JAL
$is_jalr ? $jalr_tgt_pc : // JALR
$pc + 32'h4; // Default: Next sequential instruction
//load&store
$wr_data[31:0] = $is_load ? $ld_data : $result;
// Assert these to end simulation (before Makerchip cycle limit).
m4+tb()
*failed = *cyc_cnt > M4_MAX_CYC;
//m4+rf(32, 32, $reset, $wr_en, $rd, $result, $rs1_valid, $rs1, $src1_value, $rs2_valid, $rs2, $src2_value)
m4+rf(32, 32, $reset, $wr_en, $rd, $wr_data, $rs1_valid, $rs1, $src1_value, $rs2_valid, $rs2, $src2_value)
m4+dmem(32, 32, $reset, $result[6:2], $is_s_instr, $src2_value, $is_load, $ld_data)
m4+cpu_viz()
\SV
endmodule