-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
1861 lines (1219 loc) · 41.2 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<title>Introduction to Statistical Analysis</title>
<meta charset="utf-8">
<link rel="stylesheet" href="slide.css">
</head>
<body>
<textarea id="source">
layout:true
<div class="header" style="display:block; text-align: left; color:gray; font-size:1em; position: fixed; top: 0px; left: 0px; height: 30px;vertical-align:middle;margin:7px 0 0 0;width:100%;background: #fcfcfc;
background: -moz-linear-gradient(top, #fcfcfc 0%, #d1d1d1 100%);
background: -webkit-linear-gradient(top, #fcfcfc 0%,#d1d1d1 100%);
background: linear-gradient(to bottom, #fcfcfc 0%,#d1d1d1 100%);
filter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#fcfcfc', endColorstr='#d1d1d1',GradientType=0 );">
<img src="images/datapolitan_transparent_small.png" style="position: fixed;top: 2px; left: 5px; width: 14%;">
<p style="display:block;text-align:left;color:gray;font-size:1em; position: fixed; top: 0px; left: 155px; height: 30px;vertical-align:middle;margin:7px 0 0 0; ">Introduction to Statistical Analysis</p>
</div>
<div class="footer" style="display:block;color:gray;position:fixed;bottom: 0px;left:0px;height:30px;vertical-align:middle;margin:0 0 0 0;width:100%;background: #fcfcfc;background: -moz-linear-gradient(top, #fcfcfc 0%, #d1d1d1 100%);background: -webkit-linear-gradient(top, #fcfcfc 0%,#d1d1d1 100%);background: linear-gradient(to bottom, #fcfcfc 0%,#d1d1d1 100%);sfilter: progid:DXImageTransform.Microsoft.gradient( startColorstr='#fcfcfc', endColorstr='#d1d1d1',GradientType=0 );">
<p class="footer">
<span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">Introduction to Statistical Analysis</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="http://www.datapolitan.com" property="cc:attributionName" rel="cc:attributionURL">Richard Dunks</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>.<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="Creative-Commons-License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" /></a>
</p>
</div>
---
class: center, middle
![img-center-50](images/datapolitan.png)
# Introduction to Statistical Analysis
- - -
## Instructors: Mark Yarish & Elizabeth DiLuzio
### Follow along at: http://bit.ly/intro-stats
#### See the code at: http://bit.ly/intro-stats-code
---
class:center,middle
# Welcome
???
+ Facilitators introduce themselves
+ Facilitators (respectfully) assert authority to be teaching material
+ Facilitators begin creating a safe, comfortable container for participants
---
# A Few Ground Rules
--
+ Step up, step back
--
+ Be curious and ask questions!
--
+ Assume noble regard and positive intent
--
+ Respect multiple perspectives
--
+ Listen deeply
--
+ Be present (phone, email, social media, etc.)
---
# Introductions and <a href="http://bit.ly/stats-data" target="_blank">Data Collection</a>
+ Who are you?
+ Where do you work?
+ How many siblings do you have (not including yourself)?
+ How long have you worked for NYC in years?
+ What is your height (in inches)?
???
+ Instructor uses [Google sheet to collect information](http://bit.ly/stats-data) as students introduce themselves
---
# Goals for the Course
--
+ Review descriptive statistics in the context of operational decision making
--
+ Discuss correlation and simple linear regression analysis in the context of operational decision making
--
+ Introduce decision modeling and their use
--
+ Practice calculating descriptive statistics, calculating correlation, and developing predictive models in Excel
---
# Key Takeaways for the Course
--
+ You will be more familiar with basic descriptive statistics
--
+ You will be better able to describe correlation and simple linear regression
--
+ You will better understand the value of decision models in operational decision making
--
+ You will be practiced in calculating descriptive statistics, calculating correlation, and developing predictive models in Excel
---
# Key Assumptions
--
+ You’ve had some previous experience with statistics and probability
--
+ You’re familiar with using Excel to manipulate data and calculate values
--
+ You’re familiar with using formulas in Excel
---
# Disclaimer
--
+ We're not statisticians
--
+ You won’t be a statistician by the end of this course
--
+ WeI often apply statistical tools and understanding in the work we do
--
+ We're assuming you all do the same, which is why you’re here
---
# Housekeeping
???
+ Facilitator sets expectations with the students
+ Establishes the "contract" for the class
--
+ We’ll have one 15 minute break in the morning
--
+ We’ll have an hour for lunch
--
+ We’ll have a 15 minute break in the afternoon
--
+ Class will start promptly after breaks
--
+ Feel free to use the bathroom if you need during class
--
+ Please take any phone conversations into the hall to not disrupt the class
---
# Goals for this Morning
--
+ Review basic statistical measures
--
+ Practice using statistics in real-world applications
--
+ Familiarize you with how to use Excel for statistical analysis
---
class:center,middle
> We are drowning in information and starving for knowledge.
## John Naisbitt
???
+ Facilitator prompts the participants to reflect on the value of statistics for understanding information
+ Helpful to make the distinction between the raw information and intelligence that can be used for decision making
---
# Why Statistics?
???
+ Facilitator emphasizes the utility of statistics for understanding information
--
+ Tools for extracting meaning from data
--
+ Commonly understood ways of communicating meaning to others
???
+ Facilitator makes point about being able to compare using statistics
+ I often use the example of comparing one class with the other -> if mean years of service is higher than this class, what might that imply about the
---
class:center,middle
# Let’s run the statistics on our class today
## Download <a href="http://bit.ly/stats-data" target="_blank">the data for the class</a>
![img-center-65](images/data_download_box.png)
???
+ Facilitator leads the participants through applying basic descriptive stats to the data collected at the introductions
+ Facilitator reviews each concept with participants then leads them through calculating it in the appropriate place on the spreadsheet
---
# Mean
--
+ A representative value for the data
--
+ Usually what people mean by “average”
--
+ Calculate by adding all the values together and dividing by the number instances
--
+ Sensitive to extremes
--
## .dp-orange[Calculate the means (number of siblings, years of service, and height) for our class today]
---
# Median
--
+ The “middle” value of a data set
--
+ Center value of a data set with an odd number of values
--
+ Sum of two middle values divided by 2 if the number of items in a data set is even
--
+ Resistant to extreme values
--
![img-center-100](images/median_balance.png)
--
## .dp-orange[Calculate the medians for our class today]
---
exclude:true
# Median vs Mean
![img-center-100](images/mean_vs_median.png)
---
# Mode
![img-right-50](images/mode.png)
--
+ The most frequent value in a dataset
--
+ Often used for categorical data
--
####
<br>
## .dp-orange[Calculate the mode for our class today]
---
# Median vs Mean vs Mode
![img-center-80](https://upload.wikimedia.org/wikipedia/commons/d/de/Comparison_mean_median_mode.svg)
By Cmglee (Own work) <a href="http://creativecommons.org/licenses/by-sa/3.0">CC BY-SA 3.0</a> or <a href="http://www.gnu.org/copyleft/fdl.html">GFDL</a>, <a href="https://commons.wikimedia.org/wiki/File%3AComparison_mean_median_mode.svg">via Wikimedia Commons</a>
???
+ Facilitator describes the difference between mean, median, and mode, emphasizing when you would use one over the other
---
# When Do We Use Median rather than Mean (Average)?
???
+ Facilitator reflects with participants when they recall using median rather than mean in their work or in the media
+ Establishes key learning point of when these measure should be used (depends on the shape of the data)
--
+ House Prices
--
+ Household Income
--
+ What else?
--
+ Why?
---
# Anscombe's Quartet
![img-center-70](images/anscombe_combo.png)
???
+ Facilitator uses example of Anscombe's Quartet to demonstrate the need to visually inspect data
+ For more information, see [this article](https://heap.io/blog/data-stories/anscombes-quartet-and-why-summary-statistics-dont-tell-the-whole-story)
---
# Histogram
--
![img-right-45](images/hist2.png)
+ Charts the frequency of instances in the data
--
+ Shows the frequency distribution
--
+ Values are grouped into class intervals
--
![img-right-45](images/hist1.png)
+ Best to have a consistent size to class intervals
--
<br>
<br>
.caption[http://mathematica.stackexchange.com/questions/59520/histogram-with-variable-bin-size]
---
class:center,middle
# Creating a Histogram for Height in Post-Its
???
+Have participants write their height, in inches, on a post-it
+Collect and graph post-its on poster paper
+Point out that there are a lot of bars that are quite small
+Not very helpful in understanding trends in our data
+What happens when we group the bars together? Group evenly to be sure we can draw conclusions.
+Can you see a trend better now?
---
class:center,middle
# Creating a Histogram for Height in Excel
---
# Installing Data Analysis ToolPak
![img-right-75](images/analysis_toolpak1.png)
+ File
+ Options
+ Add-ins
+ Manage
+ “Go…”
---
# Installing Data Analysis ToolPak
![img-center-50](images/analysis_toolpak2.png)
---
# Setup Your Bins
???
+ Starting with arbitrarily determining bin size by range helps to introduce the topic
+ Later introduce equal interval based on either range of the data or the limits of the lower and upper bounds to eliminate outlines
+ Key learning point is that we control how to tell the story of the data with the bin size we select
+ Easily to obscure or manufacture a pattern to the data by picking the wrong bin size
--
![img-right-20](images/bins.png)
+ Use an empty column and label it “Bins”
--
+ Start with the max of the first bin
--
+ Create an entry for each bin you want
--
+ Use a formula to save time
---
# Creating a Histogram (Height)
## .center[Under the Data Ribbon]
![img-center-65](images/analysis_toolpak3.png)
---
# Creating a Histogram (Height)
![img-center-100](images/create_hist1.png)
---
# Creating a Histogram (Height)
![img-center-60](images/create_hist2.png)
---
# Creating a Histogram (Height)
![img-center-100](images/create_hist3.png)
---
class:center,middle
# Distributions of Data
---
# Normal(-ish) Distribution
![img-center-90](images/dist_normal_rev.png)
---
# Long-tail Distribution
![img-center-95](images/dist_lt_rev.png)
---
# Bi-Modal Distribution
![img-center-100](images/dist_bm_rev.png)
---
# Measures of Central Tendency
--
+ Quantitative data tends to cluster around some central value
--
+ Contrasts with the spread of data around that center (i.e. the variability in the data)
--
+ Mean is a more precise measure and more often used
--
+ Median is better when there are extreme outliers
--
+ Mode is used when the data is categorical (as opposed to numeric)
---
class:center,middle
# Measuring Variability
---
# Range
--
+ The gap between the minimum value and the maximum value
--
+ Calculated by subtracting the minimum from the maximum
--
+ Use the [`MAX`](https://support.office.com/en-us/article/MAX-function-e0012414-9ac8-4b34-9a47-73e662c08098) and [`MIN`](https://support.office.com/en-us/article/MIN-function-61635d12-920f-4ce2-a70f-96f202dcc152) functions in Excel to calculate this for our data
---
# Quartiles
???
+ Facilitator introduces concept by discussing percentiles
+ Prompts participants with the scenario: "Your child comes home and says they scored on the 98th percentile on the SAT. What does that mean?"
+ The answer is that they scored at or above 98% of the students who took the SAT
+ This introduces the idea important to understanding Quartiles as breaking up the data into 4 equal portions of the data
--
![img-center-45](images/iqr_alt.png)
.caption-small[[Image](https://commons.wikimedia.org/wiki/File:Iqr.png) credit Ark0n [CC BY-SA 3.0](http://creativecommons.org/licenses/by-sa/3.0/)]
--
+ Quartiles split the data into four equal groups
--
+ First quartile is 0-25% of the data
--
+ Second quartile is 25-50% of the data
--
+ Third quartile is 50-75% of the data
--
+ Fourth quartile is 75-100% of the data
--
+ Use the [`QUARTILE`](https://support.office.com/en-us/article/QUARTILE-function-93cf8f62-60cd-4fdb-8a92-8451041e1a2a) function in Excel to calculate this
---
# Interquartile Range
--
+ “Middle” 50% of data (between 1st Quartile and 3rd Quartile)
--
![img-center-80](images/iqr.png)
.caption[[Image source](https://community.qlik.com/t5/Qlik-Design-Blog/Recipe-for-a-Box-Plot/ba-p/1471745?)]
---
# Outliers
![img-right-30](images/outlier.png)
--
+ Any data points less than 1.5x the IQR or greater than 1.5x the IQR are considered outliers
--
+ Helps identify data points that may skew the analysis
--
+ Focus on the “meat” of the data
--
#
.caption-right[[Image source FlowingData.com](http://flowingdata.com/2008/02/15/how-to-read-and-use-a-box-and-whisker-plot/)]
---
name:calc-iqr
class:center,middle
# Do We Have Any Outliers in Our Data?
???
+ First calculate the Upper Limit -> participants will usually calculate the formula as `=1.5 * IQR + Q3`
+ In calculating the Lower Limit -> participants will use the same order to get `=1.5 * IQR - Q1`, which leads to an incorrect result. Make sure to point this out to them
+ Reflect on any outliers with the class
---
# Standard Deviation
--
+ The average distance of each data point from the mean
--
![img-center-40](images/stdev_formula.png)
--
+ Larger the standard deviation, the greater the spread
--
![img-center-100](images/std1.png)
---
# Standard Deviation
![img-center-90](images/std_breakdown.png)
???
+ Facilitator discusses the idea of standard deviations and the amount of data at each deviation
+ For more information, see: https://simple.wikipedia.org/wiki/Standard_deviation
+ For the breakdowns of standard deviations, see https://www.robertniles.com/stats/stdev.shtml
---
# Measures of Variability
--
+ Describe the distribution of our data
--
+ Range (Maximum – Minimum)
--
+ Inter-quartile Range
--
+ Standard Deviation
--
+ Identification of outliers (1.5 x IQR)
---
# Descriptive Statistics
--
+ Quantitatively describe the main features of a dataset
--
+ Help distinguish distributions and make them comparable
--
+ 5 number summary
--
<br> - Minimum
--
<br> - 1st Quartile
--
<br> - Median
--
<br> - 3rd Quartile
--
<br> - Maximum
---
# Exploratory Data Analysis
--
+ Goal -> Discover patterns in the data
--
+ Understand the context
--
+ Summarize fields
--
+ Use graphical representations of the data
--
+ Explore outliers
--
### Tukey, J.W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.
---
class:center,middle
# 15 MIN BREAK
![img-center-100](https://imgs.xkcd.com/comics/boyfriend.png)
Source: https://xkcd.com/539/
---
class:center,middle
# Let's Try That Again
# [Vehicle Collisions in NYC](data/20160401_0630_NYPD_Motor_Vehicle_Collisions.xlsx)
---
class:center,middle
# But before we get too deep into data...
???
+ Facilitator demonstrates the concepts of a pivot table by doing a human pivot table
+ Facilitator asks participants to move to the front of the room
+ Facilitator leads them through exercises to show sort, filter, and aggregate
---
class:center,middle
![img-center-100](images/human_pivot.png)
---
# PivotTables
???
+ Facilitator introduces concept and usage of pivottables to the class
+ Best to introduce by having someone describe how they use a pivottable in their work (connects to the day-to-day concretely)
--
+ A data summarization tool
--
+ Useful to quickly understand data
--
+ Can use to graph data totals
--
![img-center-100](images/pt1.png)
---
# Creating a PivotTable
![img-center-60](images/pt2.png)
???
+ Facilitator describes the steps to creating a pivottable in Excel
+ Please don't model selecting all data before selecting "Insert Pivottable" -> creates `(blank)` field in pivottable
+ Just allow to select all data by itself
--
+ Should default to all your data .red[unless you have any cells selected]
???
+ Remind participants not to have any data selected when inserting a pivottable. When this comes up in class (because someone did it), use it as a teachable moment
--
+ Should default to a new worksheet
---
# Creating a PivotTable
![img-right-30](images/pt3a.png)
## Drag and drop fields to visualize
--
+ Row labels
--
+ Values
--
+ Filter
--
+ Column Labels
---
# Creating a PivotTable of Dates
![img-center-80](images/pt3.png)
---
exclude:true
# Creating a PivotTable
![img-center-100](images/pt4.png)
---
# Calculating Descriptive Statistics
![img-center-100](images/desc_stats1.png)
---
# Calculating Descriptive Statistics
![img-center-100](images/desc_stats2.png)
---
# Calculating Descriptive Statistics
![img-center-100](images/desc_stats3.png)
---
# Calculating Descriptive Statistics
![img-center-100](images/desc_stats4_crop.png)
---
# Questions of the Data
--
+ What is the mean number of accidents per day?
--
+ Is mean or median the best way to describe this data?
--
+ Are there any outliers in this data?
---
# Wrap-Up
???
+ Facilitator reviews the concepts introduced in the morning and ensures all questions are answered
--
+ Reviewed basic descriptive statistics
--
+ Calculated basic descriptive statistics in Excel
--
+ Discussed histograms
--
+ Created histograms in Excel
--
+ Analyzed NYC motor vehicle collision data
---
class:center,middle
# Lunch
---
class:center,middle
# Welcome Back!
---
class:center,middle
# Let's Get Back to the Data
## What is the mean (average) time a [311 noise-related service request](data/20140601_20140901_311_noise.csv) remains open? The median?
???
+ Facilitator allows participants to apply learning in a release exercise
---
# Preparing the Data - Insert Column
![img-center-80](images/311_prep1.png)
---
# Preparing the Data - Calculate Days Open
![img-center-60](images/311_prep2.png)
---
# Preparing the Data - Format Result
![img-center-100](images/311_prep3.png)
---
# Preparing the Data - Calculate Hours Open
![img-center-80](images/311_prep5.png)
---
class:center,middle
# Now Let's Calculate the Descriptive Statistics
---
# Calculating Descriptive Statistics
![img-center-100](images/311_ds1.png)
---
# Calculating Descriptive Statistics
![img-center-70](images/311_ds2.png)
---
# Calculating Descriptive Statistics
![img-right-45](images/311_ds3.png)
--
+ What's missing?
--
+ Q1
--
+ Q3
--
+ IQR
--
+ Upper Bound
--
+ Lower Bound
--
## .dp-orange[Calculate those now<br>(trust us, it'll be useful)]
---
# Creating a Histogram
![img-center-65](images/311_hist1.png)
---
# Creating a Histogram
![img-center-100](images/311_hist2.png)
---
# Creating a Histogram - Bin Size 100
![img-center-100](images/311_hist3.png)
---
# Creating a Histogram - Bin Size 100
![img-center-100](images/311_hist4.png)
---
# Creating a Histogram - Bin Size 50
![img-center-80](images/311_hist5.png)
---
# Creating a Histogram - Bin Size 50
![img-center-90](images/311_hist6.png)
---
# Creating a Histogram - Formatting Histogram
![img-center-100](images/311_hist7.png)
---
# Creating a Histogram
![img-center-85](images/311_hist8.png)
---
class:center,middle
# Do these tell a true and compelling story?
#
---
class:center,middle
# Do these tell a true and compelling story?
# What do we do about that?
---
# Things to Think About
--
+ Do we need to display all of the data?
--
+ What data do we keep?
--
+ How do we determine what to show?
--
+ How do we be clear about what we're not showing?
---
# Removing Outliers (Using 1.5 x IQR)
![img-center-95](images/311_hist9_crop_rev.png)
---
# Removing Outliers (Using 1.5 x IQR)
--
![img-right-25](images/311_hist9a.png)
+ Creating 10 equal bins (IQR of 9.275 divided by 10)
--
+ Alternative strategy for determining bins
---
# Removing Outliers (Using 1.5 x IQR)
--
![img-right-40](images/311_hist9b_box.png)
+ Only 3,659 service requests greater than 9.275 hours (upper bound)
--
+ Represents less than 10% (~9.73%) of 37,615 total service requests
---
# What Do We Know?
--
+ The median time a noise complaint is open is 2 hours
--
+ 50% of the noise complaints are closed between 1-4 hours (median is 2 hours, IQR is 3 hours)
--
+ There is a long tail of complaints that take longer to close (range of 1158 hours, standard deviation of 36 hours)
---
class:center,middle
# 15 Min Break
![img-center-70](https://imgs.xkcd.com/comics/decline.png)
[Source](https://xkcd.com/523/)
---
# Correlations
--
+ Values tend to have a relationship
--