-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConfirmatory Analysis Script.Rmd
89 lines (71 loc) · 3.07 KB
/
Confirmatory Analysis Script.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
title: "Confirmatory Analysis Script"
output: html_document
date: "2023-04-26"
---
Description: This markdown file contains the script for the confirmatory analyses implemented in the study.
```{r}
# Install packages
install.packages("lme4")
install.packages("ggplot2")
install.packages("car")
install.packages("interactions")
# Load packages
library("lme4")
library("ggplot2")
library("car")
library("interactions")
```
```{r}
# Import data (cleaned via Data Cleaning Script.rmd)
data_for_analysis <- read.csv("/Users/davidfeng/Desktop/OneDrive/PBS/LT/PB310/Data/Data for Analysis.csv")
```
Analysis 1: Regression model
```{r}
# Fit regression
regression.model <- lm(Trust ~ ReligiousMembership, data = data_for_analysis)
summary(regression.model)
# Fit regression with controls
regression.model.control <- lm(Trust ~ ReligiousMembership + Gender + Age + EducationalAttainment + Income + GDPpercapita + IndividualFreedom, data = data_for_analysis)
summary(regression.model.control)
# Bootstrap confidence intervals
regression.boot <- Boot(regression.model.control, f = coef, R = 5000)
confint(regression.boot, level = .95, type = "norm")
```
```{r}
# Check model assumptions
plot(regression.model.control)
```
Analysis 2: Multi-level model
```{r}
# Grand mean center predictor and outcome variables using the Z-score (scores represent deviations of each person's religiosity and political stability score from the overall sample means)
Religiositymean <- mean(data_for_analysis$Religiosity)
Religiositysd <- sd (data_for_analysis$Religiosity)
PoliticalStabilitymean <- mean(data_for_analysis$PoliticalStability)
PoliticalStabilitysd <- sd(data_for_analysis$PoliticalStability)
data_for_analysis <- data_for_analysis %>%
mutate(Religiosity.C = (Religiosity - Religiositymean)/Religiositysd) %>%
mutate(PoliticalStability.C = (PoliticalStability - PoliticalStabilitymean)/PoliticalStabilitysd)
# Empty model
empty.cooperation.fit <- lmer(formula = Trust ~ 1 + (1|PoliticalStability.C), data = data_for_analysis, REML = FALSE)
# Summarise model
summary(empty.cooperation.fit)
# Intraclass correlation coefficient, calculated by variance between countries / total variance
0.09565/(0.09565+0.64439)
```
```{r}
# Add level 2 predictor of religiosity to empty model
multilevel.model <- lmer(formula = Trust ~ 1 + Religiosity.C + PoliticalStability.C + Religiosity.C*PoliticalStability.C + (1 + Religiosity.C|PoliticalStability.C), data = data_for_analysis, REML = FALSE)
# Summarise model
summary(multilevel.model)
# Add controls
multilevel.model.control <- lmer(formula = Trust ~ 1 + Gender + Age + EducationalAttainment + Income + GDPpercapita + IndividualFreedom + Religiosity.C + PoliticalStability.C + Religiosity.C*PoliticalStability.C + (1 + Religiosity.C|PoliticalStability.C), data = data_for_analysis, REML = FALSE)
summary(multilevel.model.control)
# Bootstrap confidence intervals
confint(multilevel.model.control, method = "boot", nsim = 5000)
```
Probe the interaction
```{r}
# Johnson-Neyman method
johnson_neyman(model = multilevel.model.control, pred = Religiosity.C, modx = PoliticalStability.C)
```